cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A375152 Decimal expansion of the apothem (inradius) of a regular 9-gon with unit side length.

Original entry on oeis.org

1, 3, 7, 3, 7, 3, 8, 7, 0, 9, 7, 2, 7, 3, 1, 1, 1, 3, 9, 3, 8, 0, 8, 3, 2, 0, 1, 3, 2, 4, 8, 8, 3, 6, 3, 5, 8, 8, 7, 5, 9, 3, 6, 2, 9, 9, 5, 8, 5, 4, 1, 2, 9, 1, 0, 7, 5, 2, 6, 3, 6, 5, 0, 1, 2, 5, 9, 9, 4, 9, 1, 2, 6, 9, 4, 0, 7, 9, 6, 5, 9, 2, 1, 7, 0, 3, 0, 2, 1, 2
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2024

Keywords

Examples

			1.3737387097273111393808320132488363588759362995854...
		

Crossrefs

Cf. A375151 (circumradius), A375153 (sagitta), A256853 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A375067 (pentagon), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A179452 (10-gon), A375191 (11-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/9)/2 = A019968/2.
Equals 1/(2*tan(Pi/9)) = 1/(2*A019918).
Equals A375151*cos(Pi/9) = A375151*A019879.
Equals A375151 - A375153.
Largest of the 6 real-valued roots of 192*x^6 -432*x^4 +132*x^2 -1=0. - R. J. Mathar, Aug 29 2025

A381154 Decimal expansion of the isoperimetric quotient of a regular 9-gon.

Original entry on oeis.org

9, 5, 9, 0, 5, 0, 5, 4, 1, 8, 7, 3, 6, 0, 9, 3, 5, 8, 0, 7, 4, 5, 4, 3, 3, 0, 6, 7, 0, 8, 6, 4, 3, 4, 1, 3, 0, 2, 0, 1, 8, 1, 5, 8, 0, 9, 7, 5, 2, 8, 5, 8, 7, 3, 4, 3, 7, 2, 0, 7, 8, 9, 2, 8, 0, 3, 9, 1, 9, 4, 5, 1, 0, 3, 7, 5, 6, 4, 9, 7, 6, 1, 4, 4, 0, 5, 7, 7, 1, 2
Offset: 0

Views

Author

Paolo Xausa, Feb 15 2025

Keywords

Comments

For the definition of isoperimetric quotient, see A381152.

Examples

			0.959050541873609358074543306708643413020181580975...
		

Crossrefs

Cf. isoperimetric quotient of other regular polygons: A073010 (triangle), A003881 (square), A381152 (pentagon), A093766 (hexagon), A381153 (heptagon), A196522 (octagon), A381155 (10-gon), A381156 (11-gon), A381157 (12-gon).

Programs

  • Mathematica
    First[RealDigits[Pi/(9*Tan[Pi/9]), 10, 100]]

Formula

Equals Pi/(9*tan(Pi/9)) = Pi/(9*A019918).
Equals (4/81)*Pi*A256853.

A019908 Decimal expansion of tangent of 10 degrees.

Original entry on oeis.org

1, 7, 6, 3, 2, 6, 9, 8, 0, 7, 0, 8, 4, 6, 4, 9, 7, 3, 4, 7, 1, 0, 9, 0, 3, 8, 6, 8, 6, 8, 6, 1, 8, 9, 8, 6, 1, 2, 1, 6, 3, 3, 0, 6, 2, 3, 4, 8, 0, 9, 8, 6, 6, 0, 2, 0, 5, 3, 6, 3, 9, 8, 3, 8, 3, 5, 4, 4, 6, 9, 0, 8, 9, 1, 7, 7, 5, 8, 6, 2, 5, 4, 9, 8, 6, 5, 1, 3, 3, 5, 0, 8, 0, 3, 2, 4, 4, 5, 3
Offset: 0

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 80 degrees. - Mohammad K. Azarian, Jun 30 2013

Examples

			0.176326980708464973471090386868618986121633...
		

Crossrefs

Cf. A019918.

Programs

Formula

A root of 3*x^6 -27*x^4 +33*x^2 -1 =0 (others A019968, A019948). - R. J. Mathar, Aug 29 2025
tan(Pi/18) = A019819/A019889. - R. J. Mathar, Aug 31 2025

A353410 a(n) = (tan(1*Pi/9))^(2*n) + (tan(2*Pi/9))^(2*n) + (tan(3*Pi/9))^(2*n) + (tan(4*Pi/9))^(2*n).

Original entry on oeis.org

4, 36, 1044, 33300, 1070244, 34420356, 1107069876, 35607151476, 1145248326468, 36835122753252, 1184744167077204, 38105444942929620, 1225602095970073572, 39419576386043222340, 1267869080483029127412, 40779027899804602385460, 1311593714249667915837060, 42185362424185765127267748
Offset: 0

Views

Author

Bernard Schott, Apr 17 2022

Keywords

Comments

Sum_{k=1..(m-1)/2} (tan(k*Pi/m))^(2*n) is an integer when m >= 3 is an odd integer (see AMM link); this sequence is for the case m = 9.
Note tan(3*Pi/9) = tan(Pi/3) = sqrt(3).

Examples

			a(1) = tan^2 (Pi/9) + tan^2 (2*Pi/9) + tan^2 (3*Pi/9) + tan^2 (4*Pi/9) = 36.
		

Crossrefs

Similar with: A000244 (m=3), 2*A165225 (m=5), A108716 (m=7), this sequence (m=9), A275546 (m=11), A353411 (m=13).
Cf. A019676 (Pi/9), A019918 (tan(Pi/9)), A019938 (tan(2*Pi/9)).
Cf. A215948.

Programs

  • Mathematica
    LinearRecurrence[{36, -126, 84, -9}, {4, 36, 1044, 33300}, 18] (* Amiram Eldar, Apr 18 2022 *)

Formula

G.f.: 4*(1 - 27x + 63*x^2 - 21*x^3)/((1 - 3*x)*(1 - 33*x + 27*x^2 - 3*x^3)). - Stefano Spezia, Apr 18 2022
a(n) = A215948(n) + 3^n. - Jianing Song, Apr 19 2022

Extensions

More terms from Stefano Spezia, Apr 18 2022

A343057 Decimal expansion of tan(Pi/32).

Original entry on oeis.org

0, 9, 8, 4, 9, 1, 4, 0, 3, 3, 5, 7, 1, 6, 4, 2, 5, 3, 0, 7, 7, 1, 9, 7, 5, 2, 1, 2, 9, 1, 3, 2, 7, 4, 3, 2, 2, 9, 3, 0, 5, 2, 4, 5, 0, 6, 9, 9, 2, 0, 2, 6, 9, 5, 9, 8, 0, 9, 1, 6, 1, 2, 1, 1, 3, 4, 4, 1, 9, 4, 3, 8, 7, 3, 0, 8, 1, 2, 9, 7, 2, 2, 5, 6, 4, 8, 5, 2, 1, 4, 1, 8, 0, 3, 7, 3, 6, 0, 0, 1, 3, 7, 0, 6, 7, 1, 6, 9, 7, 7, 9, 1, 7, 6, 5
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.098491403357164253077197...
		

Crossrefs

Cf. A343055 (sin(Pi/32)), A343056 (cos(Pi/32)).
tan(Pi/m): A002194 (m=3), A019934 (m=5), A020760 (m=6), A343058 (m=7), A188582 (m=8), A019918 (m=9), A019916 (m=10), A019913 (m=12), A343059 (m=14), A019910 (m=15), A343060 (m=16), A343061 (m=17), A019908 (m=18), A019907 (m=20), A343062 (m=24), A019904 (m=30), A343057 (m=32), A019903 (m=36).

Programs

  • Magma
    R:= RealField(125); Tan(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Tan[Pi/32], 10, 120, -1][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    tan(Pi/32)
    
  • PARI
    sqrt((2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))))
    
  • SageMath
    numerical_approx(tan(pi/32), digits=125) # G. C. Greubel, Sep 30 2022

Formula

Equals sqrt( (2-sqrt(2+sqrt(2+sqrt(2))))/(2+sqrt(2+sqrt(2+sqrt(2)))) ).
Showing 1-5 of 5 results.