cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020557 Number of oriented multigraphs on n labeled arcs (with loops).

Original entry on oeis.org

1, 2, 15, 203, 4140, 115975, 4213597, 190899322, 10480142147, 682076806159, 51724158235372, 4506715738447323, 445958869294805289, 49631246523618756274, 6160539404599934652455, 846749014511809332450147, 128064670049908713818925644
Offset: 0

Views

Author

Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe

Keywords

References

  • G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.

Crossrefs

Cf. A070906. Bisection of Bell numbers A000110.
Cf. A099977.

Programs

  • Magma
    [Bell(2*n): n in [0..20]]; // Vincenzo Librandi, Feb 05 2017
    
  • Mathematica
    BellB[2 Range[0,20]] (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    for(n=0,50,print1(ceil(sum(i=0,1000,i^(2*n)/(i)!)/exp(1)),","))
    
  • Python
    from itertools import accumulate, islice
    def A020557_gen(): # generator of terms
        yield 1
        blist, b = (1,), 1
        while True:
            for _ in range(2):
                blist = list(accumulate(blist, initial=(b:=blist[-1])))
            yield b
    A020557_list = list(islice(A020557_gen(),30)) # Chai Wah Wu, Jun 22 2022
  • Sage
    [bell_number(2*n) for n in range(0, 17)] # Zerinvary Lajos, May 14 2009
    

Formula

a(n) = Bell(2*n) = A000110(2*n). - Vladeta Jovovic, Feb 02 2003
a(n) = exp(-1)*Sum_{k>=0} k^(2n)/k!. - Benoit Cloitre, May 19 2002
E.g.f.: exp(x*(d_z)^2)*(exp(exp(z)-1))|_{z=0}, with the derivative operator d_z := d/dz. Adapted from eqs.(14) and (15) of the 1999 C. M. Bender reference given in A000110.
E.g.f.: exp(-1)*Sum_{n>=0}exp(n^2*x)/n!. - Vladeta Jovovic, Aug 24 2006