A020714 a(n) = 5 * 2^n.
5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..238
- John Elias, Illustration: Alternating Tetrahedrons of Tetrahedrons
- Tanya Khovanova, Recursive Sequences.
- Petro Kosobutskyy, Anastasiia Yedyharova, and Taras Slobodzyan, From Newton's binomial and Pascal's triangle to Collatz's problem, Comp. Des. Sys., Theor. Practice (2023) Vol. 5, No. 1, 121-127.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1003.
- Everett Sullivan, Linear chord diagrams with long chords, arXiv preprint arXiv:1611.02771 [math.CO], 2016. See Table 1.
- Index entries for linear recurrences with constant coefficients, signature (2).
Crossrefs
Programs
-
Magma
[5*2^n: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
-
Mathematica
Table[5*2^n, {n, 0, 31}] (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *) NestList[2#&,5,40] (* Harvey P. Dale, Mar 13 2022 *)
-
PARI
a(n)=5<
Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = 5*2^n. a(n) = 2*a(n-1).
G.f.: 5/(1-2*x).
If m is a term greater than 5 of this sequence then m = 5*phi(phi(m)). - Farideh Firoozbakht, Aug 16 2005
a(n) = A118416(n+1,3) for n>2. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n)*5. - Omar E. Pol, Dec 16 2008
a(n) = A173786(n+2,n) for n > 1. - Reinhard Zumkeller, Feb 28 2010
Sum_{n>=1} 1/a(n) = 2/5. - Amiram Eldar, Oct 28 2020
E.g.f.: 5*exp(2*x). - Stefano Spezia, May 15 2021
Comments