cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020714 a(n) = 5 * 2^n.

Original entry on oeis.org

5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240, 20480, 40960, 81920, 163840, 327680, 655360, 1310720, 2621440, 5242880, 10485760, 20971520, 41943040, 83886080, 167772160, 335544320, 671088640, 1342177280, 2684354560, 5368709120, 10737418240
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(5,10), L(5,10), P(5,10), T(5,10). See A008776 for definitions of Pisot sequences.
The first differences are the sequence itself. - Alexandre Wajnberg & Eric Angelini, Sep 07 2005
5 times powers of 2. - Omar E. Pol, Dec 16 2008
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
With the addition of "2, 3," at the beginning, this sequence gives terms (n + 3) through the first term greater than 2^n, for n odd, of the negabinary Keith sequence for 2^n, thus proving that with the exception of 2 itself, no odd-indexed power of 2 is a negabinary Keith number (see A188381). - Alonso del Arte, Feb 02 2012
Let b(0) = 5 and b(n+1) = the smallest number not in the sequence such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n+2) = a(n) for n > 0. - Derek Orr, Jan 15 2015

Crossrefs

Row sums of (4, 1)-Pascal triangle A093561.
Row sums of (9, 1)-Pascal triangle A093644.
Row sums of (1, 4)-Pascal triangle A095666 (with leading 4).

Programs

Formula

a(n) = 5*2^n. a(n) = 2*a(n-1).
G.f.: 5/(1-2*x).
If m is a term greater than 5 of this sequence then m = 5*phi(phi(m)). - Farideh Firoozbakht, Aug 16 2005
a(n) = A118416(n+1,3) for n>2. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n)*5. - Omar E. Pol, Dec 16 2008
a(n) = A173786(n+2,n) for n > 1. - Reinhard Zumkeller, Feb 28 2010
a(n) = A001045(n+4) - A001045(n). - Paul Curtz, Nov 08 2012
Sum_{n>=1} 1/a(n) = 2/5. - Amiram Eldar, Oct 28 2020
E.g.f.: 5*exp(2*x). - Stefano Spezia, May 15 2021