cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020876 a(n) = ((5+sqrt(5))/2)^n + ((5-sqrt(5))/2)^n.

Original entry on oeis.org

2, 5, 15, 50, 175, 625, 2250, 8125, 29375, 106250, 384375, 1390625, 5031250, 18203125, 65859375, 238281250, 862109375, 3119140625, 11285156250, 40830078125, 147724609375, 534472656250, 1933740234375, 6996337890625, 25312988281250, 91583251953125
Offset: 0

Views

Author

Keywords

Comments

Number of no-leaf edge-subgraphs in Moebius ladder M_n.

Examples

			G.f. = 2 + 5*x + 15*x^2 + 50*x^3 + 175*x^4 + 625*x^5 + 2250*x^6 + ...
		

Crossrefs

Appears in A109106. - Johannes W. Meijer, Jul 01 2010

Programs

  • Magma
    [Floor(((5+Sqrt(5))/2)^n+((5-Sqrt(5))/2)^n): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014
  • Maple
    G:=(x,n)-> cos(x)^n+cos(3*x)^n:
    seq(simplify(4^n*G(Pi/10,2*n)), n=0..22); # Gary Detlefs, Dec 05 2010
  • Mathematica
    Table[Sum[LucasL[2*i] Binomial[n, i], {i, 0, n}], {n, 0, 50}] (* T. D. Noe, Sep 10 2011 *)
    CoefficientList[Series[(2 - 5 x)/(1 - 5 x + 5 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 08 2014 *)
    LinearRecurrence[{5,-5},{2,5},30] (* Harvey P. Dale, Mar 13 2016 *)
  • Sage
    [lucas_number2(n,5,5) for n in range(0,24)] # Zerinvary Lajos, Jul 08 2008
    

Formula

Also, a(n) = (sqrt(5)*phi)^n + (sqrt(5)/phi)^n, where phi = golden ratio. - N. J. A. Sloane, Aug 08 2014
Let S(n, m)=sum(k=0, n, binomial(n, k)*fibonacci(m*k)), then for n>0 a(n)= S(2*n, 2)/S(n, 2). - Benoit Cloitre, Oct 22 2003
From R. J. Mathar, Feb 06 2010: (Start)
a(n)= 5*a(n-1) - 5*a(n-2).
G.f.: (2-5*x)/(1-5*x+5*x^2). (End)
From Johannes W. Meijer, Jul 01 2010: (Start)
Lim_{k->infinity} a(n+k)/a(k) = (A020876(n) + A093131(n)*sqrt(5))/2.
Lim_{k->infinity} A020876(n)/A093131(n) = sqrt(5). (End)
Binomial transform of A005248. - Carl Najafi, Sep 10 2011
a(n) = 2*A030191(n) - 5*A030191(n-1). - R. J. Mathar, Mar 02 2012
From Kai Wang, Dec 22 2019: (Start)
a((2*m+1)*k)/a(k) = Sum_{i=0..m-1} (-1)^(i*(k+1))*a(2*(m-i)*k) + 5^(m*k).
A093131(m+r)*A093131(n+s) + A093131(m+s)*A093131(n+r) = (2*a(m+n+r+s) - 5^(n+s)*a(m-n)*a(r-s))/5.
a(m+r)*a(n+s) - a(m+s)*a(n+r) = 5^(n+s+1)*A093131(m-n)*A093131(r-s).
a(m+r)*a(n+s) + a(m+s)*a(n+r) = 2*a(m+n+r+s) + 5^(n+s)*a(m-n)*a(r-s).
a(m+r)*a(n+s) - 5*A093131(m+s)*A093131(n+r) = 5^(n+s)*a(m-n)*a(r-s).
a(m+r)*a(n+s) + 5*A093131(m+s)*A093131(n+r) = 2*a(m+n+r+s)+ 5^(n+s+1)*A093131(m-n)*A093131(r-s).
A093131(m-n) = (A093131(m)*a(n) - a(m)*A093131(n))/(2*5^n).
A093131(m+n) = (A093131(m)*a(n) + a(m)*A093131(n))/2.
a(n)^2 - a(n+1)*a(n-1) = -5^n.
a(n)^2 - a(n+r)*a(n-r) = -5^(n-r+1)*A093131(r)^2.
a(m)*a(n+1) - a(m+1)*a(n) = -5^(n+1)*A093131(m-n).
a(m+n) - 5^(n)*a(m-n) = 5*A093131(m)*A093131(n).
a(m+n) + 5^(n)*a(m-n) = a(m)*a(n).
a(m-n) = (a(m)*a(n) - 5*A093131(m)*A093131(n))/(2*5^n).
a(m+n) = (a(m)*a(n) + 5*A093131(m)*A093131(n))/2. (End)
E.g.f.: 2*exp(5*x/2)*cosh(sqrt(5)*x/2). - Stefano Spezia, Dec 27 2019

Extensions

Definition simplified by N. J. A. Sloane, Aug 08 2014