cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022006 Initial members p of prime 5-tuples (p, p+2, p+6, p+8, p+12).

Original entry on oeis.org

5, 11, 101, 1481, 16061, 19421, 21011, 22271, 43781, 55331, 144161, 165701, 166841, 195731, 201821, 225341, 247601, 268811, 326141, 347981, 361211, 397751, 465161, 518801, 536441, 633461, 633791, 661091, 768191, 795791, 829721, 857951, 876011, 958541
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A007530. - R. J. Mathar, Feb 10 2013
All terms, except for the first one, are congruent to 11 (modulo 30). - Matt C. Anderson, May 22 2015
For n > 1 and p = a(n), (p, p+2, p+6, p+8, p+12) are consecutive primes. - Zak Seidov, Jun 07 2017
A022007 is a similar sequence. - Wolfdieter Lang, Oct 06 2017

Examples

			Admissible 5-tuple guaranteeing sequence example: for prime(3) = 5 the first residue class starting with a nonnegative number and containing none of the members of (0, 2, 6, 8, 12) is 4 (mod 5). - _Wolfdieter Lang_, Oct 06 2017
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^6) | IsPrime(p+2) and IsPrime(p+6) and IsPrime(p+8) and IsPrime(p+12)]; // Vincenzo Librandi, May 23 2015
    
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[p+2]&&PrimeQ[p+6]&&PrimeQ[p+8]&&PrimeQ[p+12], AppendTo[lst, p]], {n, 9!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)
    Transpose[Select[Partition[Prime[Range[64000]],5,1],Differences[#] == {2,4,2,4}&]][[1]] (* Harvey P. Dale, Dec 08 2014 *)
  • PARI
    forprime(p=2,1e7, if(isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+12), print1(p", "))) \\ Charles R Greathouse IV, Jul 19 2011
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e7, 2,6,8,12); # Dana Jacobsen, Sep 30 2015
    
  • Python
    from sympy import primerange
    def aupto(limit):
      p, q, r, s, alst = 2, 3, 5, 7, []
      for t in primerange(11, limit+13):
        if p+2 == q and p+6 == r and p+8 == s and p+12 == t: alst.append(p)
        p, q, r, s = q, r, s, t
      return alst
    print(aupto(10**6)) # Michael S. Branicky, May 11 2021

Extensions

Missing terms a(51) and a(52) added in b-file by Dana Jacobsen, Sep 30 2015