A022006 Initial members p of prime 5-tuples (p, p+2, p+6, p+8, p+12).
5, 11, 101, 1481, 16061, 19421, 21011, 22271, 43781, 55331, 144161, 165701, 166841, 195731, 201821, 225341, 247601, 268811, 326141, 347981, 361211, 397751, 465161, 518801, 536441, 633461, 633791, 661091, 768191, 795791, 829721, 857951, 876011, 958541
Offset: 1
Keywords
Examples
Admissible 5-tuple guaranteeing sequence example: for prime(3) = 5 the first residue class starting with a nonnegative number and containing none of the members of (0, 2, 6, 8, 12) is 4 (mod 5). - _Wolfdieter Lang_, Oct 06 2017
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe, terms 1001..10000 from Matt C. Anderson)
- J. K. Andersen, Prime Records.
- Tony Forbes and Norman Luhn, Prime k-tuplets.
- Norman Luhn, Table of n, a(n) for n = 1..1000000.
Programs
-
Magma
[p: p in PrimesUpTo(2*10^6) | IsPrime(p+2) and IsPrime(p+6) and IsPrime(p+8) and IsPrime(p+12)]; // Vincenzo Librandi, May 23 2015
-
Mathematica
lst={};Do[p=Prime[n];If[PrimeQ[p+2]&&PrimeQ[p+6]&&PrimeQ[p+8]&&PrimeQ[p+12], AppendTo[lst, p]], {n, 9!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *) Transpose[Select[Partition[Prime[Range[64000]],5,1],Differences[#] == {2,4,2,4}&]][[1]] (* Harvey P. Dale, Dec 08 2014 *)
-
PARI
forprime(p=2,1e7, if(isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+12), print1(p", "))) \\ Charles R Greathouse IV, Jul 19 2011
-
Perl
use ntheory ":all"; say for sieve_prime_cluster(1,1e7, 2,6,8,12); # Dana Jacobsen, Sep 30 2015
-
Python
from sympy import primerange def aupto(limit): p, q, r, s, alst = 2, 3, 5, 7, [] for t in primerange(11, limit+13): if p+2 == q and p+6 == r and p+8 == s and p+12 == t: alst.append(p) p, q, r, s = q, r, s, t return alst print(aupto(10**6)) # Michael S. Branicky, May 11 2021
Extensions
Missing terms a(51) and a(52) added in b-file by Dana Jacobsen, Sep 30 2015
Comments