cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 75 results. Next

A375263 Products of prime 5-tuples (p, p+2, p+6, p+8, p+12) where p = A022006(n).

Original entry on oeis.org

85085, 1062347, 13710311357, 7260418981910177, 1070581737243007155797, 2766839311485334046837, 4100268039496291731347, 5485857138434357935487, 160955606471252225494877, 518874528458711923617827, 62276368576118330117536697, 124939289421198925662649757, 129296510584439756429395217
Offset: 1

Views

Author

Michael De Vlieger, Aug 16 2024

Keywords

Comments

Subsequence of A046387.
Aside from a(1) = 85085 = 5 (mod 30), all terms are congruent to 17 (mod 30), since a(k), k > 2 is a product m of the following residues (mod 30): {11, 13, 17, 19, 23}, and m mod 30 is congruent to 17.

Crossrefs

Programs

  • Mathematica
    Map[Times @@ NextPrime[#, Range[0, 4]] &, Select[Prime@ Range[2^16], AllTrue[{# + 2, # + 6, # + 8, # + 12}, PrimeQ] &]]

A144939 Primes that are the sum of prime 5-tuples (A022006).

Original entry on oeis.org

53, 83, 7433, 978683, 1238033, 2325833, 3168983, 3305483, 4148633, 4289783, 5112533, 5456333, 5867933, 6231833, 6842333, 12093383, 12499733, 13820633, 14201333, 15516383, 18107333, 19189283, 19470233, 21121883, 24887183
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[p+2]&&PrimeQ[p+6]&&PrimeQ[p+8]&&PrimeQ[p+12],s=p+p+2+p+6+p+8+p+12;If[PrimeQ[s],AppendTo[lst,s]]],{n,10!}];lst
    Select[Total/@Select[Partition[Prime[Range[16*10^5]],5,1],Differences[#] == {2,4,2,4}&],PrimeQ] (* Harvey P. Dale, Dec 08 2014 *)

Formula

5+7+11+13+17=53

A022007 Initial members of prime 5-tuples (p, p+4, p+6, p+10, p+12).

Original entry on oeis.org

7, 97, 1867, 3457, 5647, 15727, 16057, 19417, 43777, 79687, 88807, 101107, 257857, 266677, 276037, 284737, 340927, 354247, 375247, 402757, 419047, 427237, 463447, 470077, 626617, 666427, 736357, 823717, 855727, 959467, 978067, 1022377, 1043587, 1068247
Offset: 1

Views

Author

Keywords

Comments

Subsequence of A052378. - R. J. Mathar, Feb 11 2013
All terms are congruent to 7 (modulo 30). - Matt C. Anderson, May 22 2015
This sequence is related to the admissible prime 5-tuple (0, 4, 6, 10, 12) because the sequence [1, 2, 3, 1, 2, repeat(1)] gives for n >= 1 the smallest element of RS0(A000040(n)) (the smallest nonnegative complete residue systems modulo prime(n)) which defines a residue class containing none of the 5-tuple members. This 5-tuple is one of two prime constellations of diameter 12. The other one is (0, 2, 6, 8, 12) with initial members given in A022006. See the Wikipedia and Weisstein pages. - Wolfdieter Lang, Oct 06 2017

Examples

			Admissibility guaranteeing sequence [1, 2, 3, 1, 2, repeat(1)] examples: the only residue class modulo prime(3) = 5 which contains none of the 5-tuple (0, 4, 6, 10, 12) members is 3 (mod 5). For prime(5) = 11 the first class is 2 (mod 11); the others are 3, 5, 7, 8, 9 (mod 11). - _Wolfdieter Lang_, Oct 06 2017
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^6) | IsPrime(p+4) and IsPrime(p+6) and IsPrime(p+10)and IsPrime(p+12)]; // Vincenzo Librandi, Aug 23 2015
    
  • Mathematica
    Transpose[Select[Partition[Prime[Range[76000]], 5, 1], Differences[#] == {4, 2, 4, 2} &]][[1]] (* Harvey P. Dale, Aug 16 2014 *)
  • PARI
    forprime(p=2,1e5,if(isprime(p+4)&&isprime(p+6)&&isprime(p+10)&&isprime(p+12),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e7, 4,6,10,12); # Dana Jacobsen, Sep 30 2015

Formula

a(n) = 7 + 30*A089157(n). - Zak Seidov, Nov 01 2011

A078946 Primes p such that p, p+2, p+6, p+12 and p+14 are consecutive primes.

Original entry on oeis.org

17, 227, 1277, 1607, 3527, 3917, 4637, 4787, 27737, 38447, 39227, 44267, 71327, 97367, 99707, 113147, 122027, 122387, 124337, 165707, 183497, 187127, 191447, 197957, 198827, 275447, 290657, 312197, 317957, 347057, 349397, 416387, 418337, 421697, 427067, 443867
Offset: 1

Views

Author

Labos Elemer, Dec 19 2002

Keywords

Examples

			227 is in the sequence since 227, 229 = 227 + 2, 233 = 227 + 6, 239 = 227 + 12 and 241 = 227 + 14 are consecutive primes.
		

Crossrefs

Subsequence of A128468.
Subsequence of A078847. - R. J. Mathar, Feb 10 2013

Programs

  • Magma
    [p: p in PrimesInInterval(7,1000000) | forall{i: i in [2,6,12,14] | IsPrime(p+i)}]; // Vincenzo Librandi, Apr 19 2015
  • Mathematica
    Rest@ Select[Prime@ Range@ 36000, AllTrue[{2, 6, 12, 14} + #, PrimeQ] &] (* Michael De Vlieger, Apr 18 2015, Version 10 *)
    Select[Partition[Prime[Range[36000]],5,1],Differences[#]=={2,4,6,2}&][[All,1]] (* Harvey P. Dale, Jun 14 2022 *)
  • PARI
    isok(p) = isprime(p) && (nextprime(p+1)==p+2) && (nextprime(p+3)== p+6) && (nextprime(p+7)==p+12) && (nextprime(p+13)==p+14); \\ Michel Marcus, Dec 10 2013
    
  • PARI
    list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 2, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
    

Formula

a(n) == 17 (mod 30). - Amiram Eldar, Feb 21 2025

Extensions

Edited by Dean Hickerson, Dec 20 2002

A086140 Primes p such that three (the maximum number) primes occur between p and p+12.

Original entry on oeis.org

5, 7, 11, 97, 101, 1481, 1867, 3457, 5647, 15727, 16057, 16061, 19417, 19421, 21011, 22271, 43777, 43781, 55331, 79687, 88807, 101107, 144161, 165701, 166841, 195731, 201821, 225341, 247601, 257857, 266677, 268811, 276037, 284737, 326141, 340927
Offset: 1

Views

Author

Labos Elemer, Jul 29 2003

Keywords

Comments

p+12 must be a prime. - Harvey P. Dale, Jun 11 2015
A086140 is the union of A022006 and A022007. By merging the two b-files I have extended the current b-file up to n=10000 (nearly n=20000 would have been possible). I add a comparison (see Links) between the frequency of prime 5-tuples and an asymptotic approximation, which is unproven but likely to be true, and based on a conjecture first published by Hardy and Littlewood in 1923. Twins, triples and quadruplets are treated as well. - Gerhard Kirchner, Dec 07 2016

Examples

			There are two types of prime 5-tuples, and both are represented in this sequence. (11, 13, 17, 19, 23) is a prime 5-tuple of the form (p, p+2, p+6, p+8, p+12), so 11 is in the sequence, and (97, 101, 103, 107, 109) is a prime 5-tuple of the form (p, p+4, p+6, p+10, p+12), so 97 is in the sequence. - _Michael B. Porter_, Dec 19 2016
		

Crossrefs

Cf. A031930, A046133, A086139, A086136, A022006, A022007, A001359 (twins), A007529 (triples), A007530 (quadruplets).

Programs

  • Mathematica
    cp[x_, y_] := Count[Table[PrimeQ[i], {i, x, y}], True] {d=12, k=0}; Do[s=Prime[n]; s1=Prime[n+1]; If[PrimeQ[s+d]&&Equal[cp[s+1, s+d-1], 3], k=k+1; Print[s]], {n, 1, 100000}]
    (* Second program: *)
    Transpose[Select[Partition[Prime[Range[30000]],5,1],#[[5]]-#[[1]] == 12&]][[1]] (* Harvey P. Dale, Jun 11 2015 *)

A257124 Initial members of prime septuplets.

Original entry on oeis.org

11, 5639, 88799, 165701, 284729, 626609, 855719, 1068701, 1146779, 6560999, 7540439, 8573429, 11900501, 15760091, 17843459, 18504371, 19089599, 21036131, 24001709, 25658441, 39431921, 42981929, 43534019, 45002591, 67816361, 69156539, 74266259, 79208399, 80427029, 84104549, 86818211, 87988709, 93625991, 124066079
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: this sequence out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
Cf. A343637 (distance from 10^n to the next septuplet).
Cf. A100418.

Formula

Disjoint union of A022009 and A022010. - M. F. Hasler, Aug 04 2021

A078866 The quadruples (d1,d2,d3,d4) with elements in {2,4,6} are listed in lexicographic order; for each quadruple, this sequence lists the smallest prime p >= 5 such that the differences between the 5 consecutive primes starting with p are (d1,d2,d3,d4), if such a prime exists.

Original entry on oeis.org

5, 17, 41, 29, 71, 149, 3299, 7, 13, 67, 1597, 19, 43, 12637, 1601, 23, 593, 31, 61, 3313, 157, 47, 601, 151, 251, 3301
Offset: 1

Views

Author

Labos Elemer, Dec 19 2002

Keywords

Comments

The 26 quadruples for which p exists are listed, in decimal form, in A078868.

Examples

			The term 12637 corresponds to the quadruple (4,6,6,6): 12637, 12641, 12647, 12653 and 12659 are consecutive primes.
		

Crossrefs

The quadruples are in A078868. The same primes, in increasing order, are in A078867. The sequences of primes corresponding to the 26 difference patterns are in A022006, A022007 and A078946-A078970. Cf. A001223.

Extensions

Edited by Dean Hickerson, Dec 20 2002

A078867 Sorted version of A078866.

Original entry on oeis.org

5, 7, 13, 17, 19, 23, 29, 31, 41, 43, 47, 61, 67, 71, 149, 151, 157, 251, 593, 601, 1597, 1601, 3299, 3301, 3313, 12637
Offset: 1

Views

Author

Labos Elemer, Dec 19 2002

Keywords

Comments

Each term is the smallest prime p >= 5 such that the differences between the 5 consecutive primes starting with p are (d1,d2,d3,d4), for some quadruple (d1,d2,d3,d4) with elements in {2,4,6}.

Examples

			The term 3299 corresponds to the quadruple (2,6,6,6): 3299, 3301, 3307, 3313, 3319 are consecutive primes.
		

Crossrefs

The quadruples are in A078868. The same primes, in lexicographic order of the quadruples, are in A078866. The sequences of primes corresponding to the 26 difference patterns are in A022006, A022007 and A078946-A078970. Cf. A001223.

Extensions

Edited by Dean Hickerson, Dec 20 2002

A257125 Initial members of prime 9-tuplets (or nonuplets).

Original entry on oeis.org

7, 11, 13, 17, 1277, 88789, 113143, 113147, 855709, 74266249, 182403491, 226449521, 252277007, 408936947, 521481197, 626927443, 910935911, 964669609, 1042090781, 1116452627, 1209950867, 1422475909, 1459270271, 1645175087, 2117861719, 2335215973, 2558211559, 2843348351, 2873599429, 2966003057, 3447123283, 3947480417
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Comments

Primes prime(m) such that prime(m+8) = prime(m) + 30. - Zak Seidov, Jul 06 2015

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime 5-tuples: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: this sequence out of A022547, A022548, A022545, A022546.
prime decaplets: A257127 out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.

Programs

  • Magma
    [NthPrime(n): n in [0..2*10^4] | NthPrime(n+8) eq (NthPrime(n) + 30)]; // Vincenzo Librandi, Jul 08 2015
  • Mathematica
    {p, q, r, s, t, u, v, w, x} = Prime@ Range@ 9; lst = {}; While[p < 1000000001, If[p + 30 == x, AppendTo[lst, p]; Print@ p]; {p, q, r, s, t, u, v, w, x} = {q, r, s, t, u, v, w, x, NextPrime@ x}]; lst (* Robert G. Wilson v, Jul 06 2015 *)
    Select[Partition[Prime[Range[5 10^6]],9,1],#[[1]]+30==#[[9]]&][[;;,1]] (* The program generates the first 10 terms of the sequence. To generate more, increase the Range constant. *) (* Harvey P. Dale, Jul 01 2024 *)
  • PARI
    main(size)=v=vector(size); i=0; m=1; while(iAnders Hellström, Jul 08 2015
    

A257127 Initial members of prime 10-tuplets (or decaplets).

Original entry on oeis.org

11, 9853497737, 21956291867, 22741837817, 33081664151, 83122625471, 164444511587, 179590045487, 217999764107, 231255798857, 242360943257, 294920291201, 573459229151, 663903555851, 666413245007, 688697679401, 696391309697, 730121110331, 867132039857, 974275568237, 976136848847, 1002263588297
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Apr 16 2015

Keywords

Crossrefs

Initial members of all of the first prime k-tuplets:
twin primes: A001359.
prime triples: A007529 out of A022004, A022005.
prime quadruplets: A007530.
prime quintuplets: A086140 out of A022007, A022006.
prime sextuplets: A022008.
prime septuplets: A257124 out of A022009, A022010.
prime octuplets: A065706 out of A022011, A022012, A022013.
prime nonuplets: A257125 out of A022547, A022548, A022545, A022546.
prime decaplets: this sequence out of A027569, A027570.
prime 11-tuplets: A257129 out of A213646, A213647.
prime 12-tuplets: A257131 out of A213601, A213645.
prime 13-tuplets: A257135 out of A214947, A257137, A257138, A257139, A257140, A257141.
prime 14-tuplets: A257166 out of A257167, A257168.
prime 15-tuplets: A257169 out of A257304, A257305, A257306, A257307.
prime 16-tuplets: A257308 out of A257369, A257370.
prime 17-tuplets: A257373 out of A257374, A257375, A257376, A257377.
Showing 1-10 of 75 results. Next