A022096 Fibonacci sequence beginning 1, 6.
1, 6, 7, 13, 20, 33, 53, 86, 139, 225, 364, 589, 953, 1542, 2495, 4037, 6532, 10569, 17101, 27670, 44771, 72441, 117212, 189653, 306865, 496518, 803383, 1299901, 2103284, 3403185, 5506469, 8909654, 14416123, 23325777, 37741900, 61067677, 98809577, 159877254
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jia Huang, Hecke algebras of simply-laced type with independent parameters, arXiv:1902.11139 [math.RT], 2019.
- Tanya Khovanova, Recursive Sequences
- José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
- J. L. Ramírez and G. N. Rubiano, Properties and Generalizations of the Fibonacci Word Fractal, The Mathematica Journal, Vol. 16 (2014).
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
a0:=1; a1:=6; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
-
Mathematica
CoefficientList[Series[(1+5 x)/(1-x-x^2), {x,0,40}], x] (* Vincenzo Librandi, Apr 25 2014 *) LinearRecurrence[{1,1},{1,6},40] (* Harvey P. Dale, Aug 07 2023 *)
-
PARI
a(n)=([0,1; 1,1]^n*[1;6])[1,1] \\ Charles R Greathouse IV, Jan 29 2016
-
SageMath
A022096=BinaryRecurrenceSequence(1,1,1,6) print([A022096(n) for n in range(41)]) # G. C. Greubel, Jun 02 2025
Formula
a(n) = a(n-1) + a(n-2), n>=2, a(0)=1, a(1)=6.
G.f.: (1+5*x)/(1-x-x^2).
a(n) = A109754(5, n+1).
a(n) = 5*Fibonacci(n+2) - 4*Fibonacci(n+1). - Gary Detlefs, Dec 21 2010
a(n) = (2^(-1-n)*((1 - sqrt(5))^n*(-11 + sqrt(5)) + (1 + sqrt(5))^n*(11 + sqrt(5))))/sqrt(5). - Herbert Kociemba, Dec 18 2011
a(n) = Fibonacci(n+3) - Fibonacci(n-4). - Greg Dresden and Sam Neale, Mar 08 2022
Extensions
Spelling correction by Jason G. Wurtzel, Aug 22 2010
Comments