A022264 a(n) = n*(7*n - 1)/2.
0, 3, 13, 30, 54, 85, 123, 168, 220, 279, 345, 418, 498, 585, 679, 780, 888, 1003, 1125, 1254, 1390, 1533, 1683, 1840, 2004, 2175, 2353, 2538, 2730, 2929, 3135, 3348, 3568, 3795, 4029, 4270, 4518, 4773, 5035, 5304, 5580, 5863, 6153, 6450, 6754, 7065, 7383
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Leo Tavares, Illustration: Crysta-gons
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[n*(7*n-1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Dec 04 2016
-
Maple
[seq(binomial(7*n,2)/7, n=0..37)]; # Zerinvary Lajos, Jan 02 2007
-
Mathematica
Table[n (7*n - 1)/2, {n, 0, 40}] (* Zerinvary Lajos, Jul 10 2009 *)
-
PARI
a(n)=n*(7*n-1)/2 \\ Charles R Greathouse IV, Mar 08 2013
Formula
a(n) = C(7*n,2)/7, n >= 0. - Zerinvary Lajos, Jan 02 2007
a(n) = 7*n + a(n-1) - 4 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = A174738(7*n+2). - Philippe Deléham, Mar 26 2013
G.f.: x*(3 + 4*x)/(1 - x)^3. - R. J. Mathar, Aug 04 2016
a(n) = (1/5) * Sum_{i=n..(6*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
E.g.f.: (1/2)*x*(7*x + 6)*exp(x). - G. C. Greubel, Aug 19 2017
Comments