A023037 a(n) = n^0 + n^1 + ... + n^(n-1), or a(n) = (n^n-1)/(n-1) with a(0)=0; a(1)=1.
0, 1, 3, 13, 85, 781, 9331, 137257, 2396745, 48427561, 1111111111, 28531167061, 810554586205, 25239592216021, 854769755812155, 31278135027204241, 1229782938247303441, 51702516367896047761, 2314494592664502210319, 109912203092239643840221
Offset: 0
Examples
a(3) = 3^0 + 3^1 + 3^2 = 1+3+9 = 13.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..387 (first 101 terms from T. D. Noe)
- Carlos M. da Fonseca and Anthony G. Shannon, A formal operator involving Fermatian numbers, Notes Num. Theor. Disc. Math. (2024) Vol. 30, No. 3, 491-498.
- W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arith., 35 (1979), 1-16.
Programs
-
Maple
A023037:=n->add(n^i, i=0..n-1): seq(A023037(n), n=0..25); # Wesley Ivan Hurt, May 28 2016
-
Mathematica
Join[{0,1},Table[(n^n-1)/(n-1),{n,2,20}]] (* Harvey P. Dale, Aug 01 2014 *)
-
PARI
a(n) = if(n==1, 1, (n^n-1)/(n-1)); \\ Altug Alkan, Oct 04 2017
-
Python
def A023037(n): return (n**n-1)//(n-1) if n>1 else n # Chai Wah Wu, Sep 28 2023
-
Sage
[lucas_number1(n,n+1,n) for n in range(0, 19)] # Zerinvary Lajos, May 16 2009
Formula
a(n) = A125118(n,n-1) for n>1. - Reinhard Zumkeller, Nov 21 2006
a(n) = [x^n] x/((1 - x)*(1 - n*x)). - Ilya Gutkovskiy, Oct 04 2017
Extensions
Entry improved by Tobias Nipkow (nipkow(AT)in.tum.de).
Comments