cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023037 a(n) = n^0 + n^1 + ... + n^(n-1), or a(n) = (n^n-1)/(n-1) with a(0)=0; a(1)=1.

Original entry on oeis.org

0, 1, 3, 13, 85, 781, 9331, 137257, 2396745, 48427561, 1111111111, 28531167061, 810554586205, 25239592216021, 854769755812155, 31278135027204241, 1229782938247303441, 51702516367896047761, 2314494592664502210319, 109912203092239643840221
Offset: 0

Views

Author

Keywords

Comments

For prime n, a(n) is conjectured to be the period of Bell numbers (mod n). See A054767. - T. D. Noe, Oct 12 2007
For prime n, a(n) is a multiple of the period of Bell numbers mod n (and conjectured to be exactly the period, as mentioned above). - Charles R Greathouse IV, Jul 31 2012
For n >= 1, a(n) is the number whose base n representation is a string of n ones. For example, 11111 in base 5 is a(5) = 781. - Melvin Peralta, May 23 2016
For n > 0, n^(a(n)-1) == 1 (mod a(n)), so for n > 1, a(n) is a prime or a Fermat pseudoprime to base n. - Thomas Ordowski, Mar 15 2021

Examples

			a(3) = 3^0 + 3^1 + 3^2 = 1+3+9 = 13.
		

Crossrefs

Cf. A001039, A054767, A088790 (n such that a(n) is prime), A125118.

Programs

Formula

a(n) = A125118(n,n-1) for n>1. - Reinhard Zumkeller, Nov 21 2006
a(n) = [x^n] x/((1 - x)*(1 - n*x)). - Ilya Gutkovskiy, Oct 04 2017

Extensions

Entry improved by Tobias Nipkow (nipkow(AT)in.tum.de).