A068106
Euler's difference table: triangle read by rows, formed by starting with factorial numbers (A000142) and repeatedly taking differences. T(n,n) = n!, T(n,k) = T(n,k+1) - T(n-1,k).
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 2, 3, 4, 6, 9, 11, 14, 18, 24, 44, 53, 64, 78, 96, 120, 265, 309, 362, 426, 504, 600, 720, 1854, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 14833, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320, 133496, 148329, 165016, 183822, 205056, 229080, 256320, 287280, 322560, 362880
Offset: 0
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 1, 1, 2;
[3] 2, 3, 4, 6;
[4] 9, 11, 14, 18, 24;
[5] 44, 53, 64, 78, 96, 120;
[6] 265, 309, 362, 426, 504, 600, 720;
[7] 1854, 2119, 2428, 2790, 3216, 3720, 4320, 5040.
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- W. Y. C. Chen et al., Higher-order log-concavity in Euler's difference table, Discrete Math., 311 (2011), 2128-2134.
- P. R. de Montmort, On the Game of Thirteen (1713), reprinted in Annotated Readings in the History of Statistics, ed. H. A. David and A. W. F. Edwards, Springer-Verlag, 2001, pp. 25-29.
- Emeric Deutsch and S. Elizalde, The largest and the smallest fixed points of permutations, arXiv:0904.2792 [math.CO], 2009.
- D. Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
- Philip Feinsilver and John McSorley, Zeons, Permanents, the Johnson scheme, and Generalized Derangements, arXiv:1710.00788 [math.CO], (2017); see page 29.
- P. Feinsilver and J. McSorley, Zeons, Permanents, the Johnson scheme, and Generalized Derangements, International Journal of Combinatorics, 2011 (2011).
- Fanja Rakotondrajao, k-Fixed-Points-Permutations, Integers: Electronic journal of combinatorial number theory 7 (2007) A36.
- Index entries for sequences related to factorial numbers
Diagonals give
A000142,
A001563,
A001564,
A001565,
A001688,
A001689,
A023043,
A023044,
A023045,
A023046,
A023047 (factorials and k-th differences, k=1..10).
Columns k=0..10 give
A000166,
A000255,
A055790,
A277609,
A277563,
A280425,
A280920,
A284204,
A284205,
A284206,
A284207.
-
a068106 n k = a068106_tabl !! n !! k
a068106_row n = a068106_tabl !! n
a068106_tabl = map reverse a047920_tabl
-- Reinhard Zumkeller, Mar 05 2012
-
d[0] := 1: for n to 15 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if k <= n then sum(binomial(k, j)*d[n-j], j = 0 .. k) else 0 end if end proc: for n from 0 to 9 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form; Emeric Deutsch, Jul 18 2009
-
t[n_, k_] := Sum[(-1)^j*Binomial[n-k, j]*(n-j)!, {j, 0, n}]; Flatten[ Table[ t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Feb 21 2012, after Philippe Deléham *)
T[n_, k_] := n! HypergeometricPFQ[{k-n}, {-n}, -1];
Table[T[n, k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 01 2003
A086764
Triangle T(n, k), read by row, related to Euler's difference table A068106 (divide column k of A068106 by k!).
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 9, 11, 7, 3, 1, 44, 53, 32, 13, 4, 1, 265, 309, 181, 71, 21, 5, 1, 1854, 2119, 1214, 465, 134, 31, 6, 1, 14833, 16687, 9403, 3539, 1001, 227, 43, 7, 1, 133496, 148329, 82508, 30637, 8544, 1909, 356, 57, 8, 1
Offset: 0
Formatted as a square array:
1 3 7 13 21 31 43 57 ... A002061;
2 11 32 71 134 227 356 ... A094792;
9 53 181 465 1001 1909 ... A094793;
44 309 1214 3539 8544 ... A094794;
265 2119 9403 30637 ... A023043;
1854 16687 82508 ... A023044;
14833 148329 ... A023045;
Formatted as a triangular array (mirror of A076731):
1;
0 1;
1 1 1;
2 3 2 1;
9 11 7 3 1;
44 53 32 13 4 1;
265 309 181 71 21 5 1;
1854 2119 1214 465 134 31 6 1;
14833 16687 9403 3539 1001 227 43 7 1;
133496 148329 82508 30637 8544 1909 356 57 8 1;
Columns:
A000166,
A000155,
A000153,
A000261,
A001909,
A001910,
A176732,
A176733,
A176734,
A176735,
A176736.
-
A086764:= func< n,k | (&+[(-1)^j*Binomial(n-k,j)*Factorial(n-j): j in [0..n]])/Factorial(k) >;
[A086764(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
-
T[n_,k_]:=(1/k!)*Sum[(-1)^j*Binomial[n-k,j]*(n-j)!,{j,0,n}];Flatten[Table[T[n,k],{n,0,11},{k,0,n}]] (* Indranil Ghosh, Feb 20 2017 *)
T[n_, k_] := (n!/k!) HypergeometricPFQ[{k-n},{-n},-1];
Table[T[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)
-
def A086764(n,k): return sum((-1)^j*binomial(n-k,j)*factorial(n-j) for j in range(n+1))//factorial(k)
flatten([[A086764(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023
A076731
Table T(n,k) giving number of ways of obtaining exactly 0 correct answers on an (n,k)-matching problem (1 <= k <= n).
Original entry on oeis.org
0, 1, 1, 2, 3, 2, 3, 7, 11, 9, 4, 13, 32, 53, 44, 5, 21, 71, 181, 309, 265, 6, 31, 134, 465, 1214, 2119, 1854, 7, 43, 227, 1001, 3539, 9403, 16687, 14833, 8, 57, 356, 1909, 8544, 30637, 82508, 148329, 133496, 9, 73, 527, 3333, 18089, 81901, 296967, 808393
Offset: 1
0; 1,1; 2,3,2; 3,7,11,9; ...
Formatted as a square array:
0 1 2 3 4 5 6 7 8
1 3 7 13 21 31 43 57 which equals A002061
2 11 32 71 134 227 356 which equals A094792
9 53 181 465 1001 1909 which equals A094793
44 309 1214 3539 8544 which equals A094794
265 2119 9403 30637 which equals A023043
1854 16687 82508 which equals A023044
14833 148329 which equals A023045
Columns give A000255 A000153 A000261 A001909 A001910
Formatted as a triangular array (mirror image of A086764):
0
1 1
2 3 2
3 7 11 9
4 13 32 53 44
5 21 71 181 309 265
6 31 134 465 1214 2119 1854
7 43 227 1001 3539 9403 16687 14833
8 57 356 1909 8544 30637 82508 148329 133496
- D. Hanson, K. Seyffarth and J. H. Weston, Matchings, Derangements, Rencontres, Mathematics Magazine, Vol. 56, No. 4, September 1983.
- StackExchange, How many injective functions f:[1,...,m]->[1,...,n] have no fixed point?
-
A076731 := proc(n,k): (1/(n-k)!)*A061312(n-1,k-1) end: A061312:=proc(n,k): add(((-1)^j)*binomial(k+1,j)*(n+1-j)!, j=0..k+1) end: for n from 1 to 7 do seq(A076731(n,k), k=1..n) od; seq(seq(A076731(n,k), k=1..n), n=1..9); # Johannes W. Meijer, Jul 27 2011
-
t[n_,k_] := k!(n - k)! SeriesCoefficient[Exp[z(1-u+u^2z)/(1-z u)]/(1-z u), {z,0,n}, {u,0,k}]; Table[t[n,k], {n,9}, {k,n}] //TableForm (* David Bevan, Apr 29 2013 *)
t[n_, k_] := Pochhammer[n-k+1, k]*Hypergeometric1F1[-k, -n, -1]; Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 29 2013 *)
A306512
Number A(n,k) of permutations p of [n] having no index i with |p(i)-i| = k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 9, 1, 1, 2, 3, 5, 44, 1, 1, 2, 6, 9, 21, 265, 1, 1, 2, 6, 14, 34, 117, 1854, 1, 1, 2, 6, 24, 53, 176, 792, 14833, 1, 1, 2, 6, 24, 78, 265, 1106, 6205, 133496, 1, 1, 2, 6, 24, 120, 362, 1554, 8241, 55005, 1334961
Offset: 0
A(4,0) = 9: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321.
A(4,1) = 5: 1234, 1432, 3214, 3412, 4231.
A(4,2) = 9: 1234, 1243, 1324, 2134, 2143, 2341, 4123, 4231, 4321.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 2, 2, 2, 2, ...
2, 2, 3, 6, 6, 6, 6, 6, ...
9, 5, 9, 14, 24, 24, 24, 24, ...
44, 21, 34, 53, 78, 120, 120, 120, ...
265, 117, 176, 265, 362, 504, 720, 720, ...
1854, 792, 1106, 1554, 2119, 2790, 3720, 5040, ...
-
A:= proc(n, k) option remember; `if`(k>=n, n!, LinearAlgebra[
Permanent](Matrix(n, (i, j)-> `if`(abs(i-j)=k, 0, 1))))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
b:= proc(s, k) option remember; (n-> `if`(n=0, 1, add(
`if`(abs(i-n)=k, 0, b(s minus {i}, k)), i=s)))(nops(s))
end:
A:= (n, k)-> `if`(k>=n, n!, b({$1..n}, k)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := If[k > n, n!, Permanent[Table[If[Abs[i-j] == k, 0, 1], {i, 1, n}, {j, 1, n}]]]; A[0, 0] = 1;
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 05 2021, from first Maple program *)
b[s_, k_] := b[s, k] = With[{n = Length[s]}, If[n == 0, 1, Sum[
If[Abs[i-n] == k, 0, b[s ~Complement~ {i}, k]], {i, s}]]];
A[n_, k_] := If[k >= n, n!, b[Range@n, k]];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Sep 01 2021, from second Maple program *)
A023044
7th differences of factorial numbers.
Original entry on oeis.org
1854, 16687, 165016, 1781802, 20886576, 264398280, 3597143040, 52370755920, 812752093440, 13397819541120, 233845982899200, 4309095479673600, 83609603781580800, 1704092533657113600, 36403110891295948800
Offset: 0
A061312
Triangle T[n,m]: T[n,-1] = 0; T[0,0] = 0; T[n,0] = n*n!; T[n,m] = T[n,m-1] - T[n-1,m-1].
Original entry on oeis.org
0, 1, 1, 4, 3, 2, 18, 14, 11, 9, 96, 78, 64, 53, 44, 600, 504, 426, 362, 309, 265, 4320, 3720, 3216, 2790, 2428, 2119, 1854, 35280, 30960, 27240, 24024, 21234, 18806, 16687, 14833, 322560, 287280, 256320, 229080, 205056, 183822, 165016, 148329
Offset: 0
0,
1, 1,
4, 3, 2,
18, 14, 11, 9,
96, 78, 64, 53, 44,
600, 504, 426, 362, 309, 265,
4320, 3720, 3216, 2790, 2428, 2119, 1854,
35280, 30960, 27240, 24024, 21234, 18806, 16687, 14833,
Columns:
A001563,
A001564,
A001565,
A001688,
A001689,
A023044,
A023045,
A023046,
A023047;
A000166,
A000255,
A055790;
-
[[(&+[(-1)^j*Binomial(k+1,j)*Factorial(n-j+1): j in [0..k+1]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Aug 13 2018
-
A061312 := proc(n,m): add(((-1)^j)*binomial(m+1,j)*(n+1-j)!, j=0..m+1) end: seq(seq(A061312(n,m), m=0..n), n=0..7); # Johannes W. Meijer, Jul 27 2011
-
T[n_, k_]:= Sum[(-1)^j*Binomial[k + 1, j]*(n + 1 - j)!, {j, 0, k + 1}]; Table[T[n, k], {n, 0, 100}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 13 2018 *)
-
for(n=0,20, for(k=0,n, print1(sum(j=0,k+1, (-1)^j*binomial(k+1,j) *(n-j+1)!), ", "))) \\ G. C. Greubel, Aug 13 2018
Showing 1-6 of 6 results.
Comments