cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A023244 Primes that remain prime through 2 iterations of the function f(x) = 2x + 7.

Original entry on oeis.org

2, 5, 17, 23, 53, 83, 137, 197, 227, 257, 293, 317, 347, 383, 467, 593, 647, 677, 683, 797, 857, 953, 1163, 1193, 1217, 1607, 1877, 1907, 1913, 1997, 2063, 2207, 2237, 2843, 2903, 3023, 3257, 3323, 3557, 3947, 4133, 4253, 4517, 4583, 4643, 4967, 5087, 5387
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+7 and 4*p+21 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023206 and A105760.

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(2*n+7) and IsPrime(4*n+21)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    Select[Prime@ Range[10^3], Times @@ Boole@ PrimeQ@ NestList[2 # + 7 &, #, 2] > 0 &] (* Michael De Vlieger, Sep 12 2016 *)

Formula

a(n) == 5 (mod 6), for n > 1. - John Cerkan, Sep 12 2016

A023275 Primes that remain prime through 3 iterations of function f(x) = 2x + 7.

Original entry on oeis.org

5, 23, 293, 593, 953, 2063, 3323, 4133, 4583, 8243, 8783, 9173, 9203, 14723, 15383, 16103, 16763, 18413, 19163, 20123, 25733, 29453, 37223, 38783, 39443, 40253, 41903, 42923, 44753, 45863, 49433, 51473, 54443, 54623, 54713, 57383, 58913, 63353, 66533
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+7, 4*p+21 and 8*p+49 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023206, A023244, and of A105760.

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(2*n+7) and IsPrime(4*n+21) and IsPrime(8*n+49)] // Vincenzo Librandi, Aug 04 2010
    
  • Mathematica
    Select[Prime@ Range@ 7000, Times @@ Boole@ PrimeQ@ Rest@ NestList[2 # + 7 &, #, 3] > 0 &] (* Michael De Vlieger, Sep 19 2016 *)
    Select[Prime[Range[7000]],AllTrue[Rest[NestList[2#+7&,#,3]],PrimeQ]&] (* Harvey P. Dale, Dec 26 2022 *)
  • PARI
    is(n)=isprime(n) && isprime(2*n+7) && isprime(4*n+21) && isprime(8*n+49) \\ Charles R Greathouse IV, Sep 20 2016

Formula

a(n) == 23 (mod 30) for n > 1. - John Cerkan, Sep 16 2016

A023305 Primes that remain prime through 4 iterations of function f(x) = 2x + 7.

Original entry on oeis.org

293, 2063, 4583, 9203, 14723, 20123, 25733, 29453, 40253, 54713, 76103, 97523, 99833, 109433, 138683, 149993, 158243, 196853, 199403, 218873, 253103, 297623, 379913, 416963, 445463, 468113, 508073, 551963, 562403, 564713, 574703, 583733
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+7, 4*p+21, 8*p+49 and 16*p+105 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023206, A023244, A023275, and A105760.

Programs

  • Magma
    [n: n in [1..1000000] | IsPrime(n) and IsPrime(2*n+7) and IsPrime(4*n+21) and IsPrime(8*n+49) and IsPrime(16*n+105)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    rp4Q[n_]:=AllTrue[Rest[NestList[2#+7&,n,4]],PrimeQ]; Select[Prime[Range[ 50000]],rp4Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 30 2020 *)

Formula

a(n) == 3 (mod 10). - John Cerkan, Oct 04 2016

A290839 a(n) = smallest prime p such that 2p + 2n - 1 is prime.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 3, 2, 7, 3, 2, 5, 3, 2, 2, 7, 3, 2, 3, 2, 2, 13, 3, 2, 3, 2, 11, 3, 2, 5, 7, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 13, 7, 11, 5, 19, 3, 2, 3, 2, 5, 3, 2, 2, 7, 5, 5, 3, 2, 2, 7, 3, 2, 13, 3, 2, 3, 2, 7, 3, 2
Offset: 0

Views

Author

XU Pingya, Aug 12 2017

Keywords

Crossrefs

Cf. A067076 (indices n at which a(n) = 2).

Programs

  • Mathematica
    Table[j=0; found=False; While[!found, j++; found=PrimeQ[2Prime[j]+2n-1]]; Prime[j], {n, 85}]
  • PARI
    a(n) = {my(p=2); while(!isprime(2*p+2*n-1), p = nextprime(p+1)); p;} \\ Michel Marcus, Aug 12 2017

Formula

a(-n) = A290838(n+1). - Iain Fox, Dec 14 2017

Extensions

a(0) prepended by Iain Fox, Dec 14 2017

A023333 Primes that remain prime through 5 iterations of function f(x) = 2x + 7.

Original entry on oeis.org

14723, 20123, 54713, 109433, 594653, 604883, 676493, 759953, 847103, 935843, 1035743, 1049603, 1079033, 1099823, 1222253, 1263323, 1499153, 1754033, 1835003, 1893173, 2017283, 2071493, 2099213, 2199653, 2895743, 2998313, 3389693, 4133663
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+7, 4*p+21, 8*p+49, 16*p+105 and 32*p+217 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Subsequence of A023206, A023244, A023275, A023305, and A105760.

Programs

  • Magma
    [n: n in [1..5000000] | IsPrime(n) and IsPrime(2*n+7) and IsPrime(4*n+21) and IsPrime(8*n+49) and IsPrime(16*n+105) and IsPrime(32*n+217)] // Vincenzo Librandi, Aug 04 2010

Formula

a(n) == 23 (mod 30). - John Cerkan, Oct 10 2016

A106086 Primes p such that 7*p + 2 and 2*p + 7 are primes.

Original entry on oeis.org

3, 5, 11, 23, 47, 53, 71, 131, 173, 197, 251, 257, 293, 317, 383, 461, 467, 587, 593, 683, 701, 773, 797, 863, 953, 983, 1031, 1103, 1151, 1187, 1193, 1217, 1301, 1307, 1373, 1451, 1481, 1607, 1721, 1787, 2111, 2207, 2237, 2333, 2633, 2903, 3023, 3221, 3347
Offset: 1

Views

Author

Zak Seidov, May 07 2005

Keywords

Crossrefs

Cf. A105760 (2n+7 is prime), A105772 (7n+2 is prime).

Programs

  • Magma
    [p: p in PrimesUpTo(5000)|IsPrime(7*p+2) and IsPrime(2*p+7)] // Vincenzo Librandi, Jan 30 2011
  • Mathematica
    Select[Prime[Range[220]], PrimeQ[2#+7]&&PrimeQ[7#+2]&]

Extensions

More terms from Rick L. Shepherd, Jan 29 2006

A153145 Primes p such that 2*p + 19 is also prime.

Original entry on oeis.org

2, 5, 11, 17, 41, 47, 59, 89, 107, 131, 137, 149, 167, 191, 251, 269, 311, 317, 389, 401, 419, 431, 461, 467, 479, 521, 587, 599, 641, 677, 797, 809, 839, 857, 929, 941, 947, 977, 1031, 1061, 1097, 1109, 1181, 1187, 1229, 1301, 1307, 1319, 1361, 1367, 1409
Offset: 1

Views

Author

Vincenzo Librandi, Dec 19 2008

Keywords

Examples

			For n=2, 2*n+19 = 23 is prime, so 2 is in the sequence.
		

Crossrefs

Cf. A153143 (m and 2*m+19 are both prime), A005384 (Sophie Germain primes, m and 2*m+1 are both prime), A023204 (m and 2*m+3 are both prime), A023205 (m and 2*m+5 are both prime), A023206 (m and 2*m+7 are both prime), A023207 (m and 2*m+9 are both prime).

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | IsPrime(2*p+19)];
  • Mathematica
    Select[Prime[Range[2000]],PrimeQ[2 # + 19] &] (* Vincenzo Librandi, Oct 20 2012 *)

Extensions

Edited, corrected and extended by Klaus Brockhaus, Dec 22 2008

A166009 Primes of the form 7 + 2*p, where p is a prime.

Original entry on oeis.org

11, 13, 17, 29, 41, 53, 89, 101, 113, 149, 173, 233, 269, 281, 353, 389, 401, 461, 509, 521, 569, 593, 641, 701, 773, 809, 929, 941, 1013, 1049, 1181, 1193, 1289, 1301, 1361, 1373, 1409, 1493, 1553, 1601, 1721, 1733, 1889, 1901, 1913, 1949, 1973, 2069, 2129
Offset: 1

Views

Author

Vincenzo Librandi, Oct 04 2009

Keywords

Comments

Starting with n=3 both a(n) and A023206(n) == 5 mod 6. - Zak Seidov, Oct 23 2009

Examples

			13 is in the sequence because 13 = 7 + 2*3 and 3 are both primes.
		

Crossrefs

Cf. A023206. - Zak Seidov, Oct 23 2009

Programs

  • Mathematica
    Clear[lst,n,f] f[n_]:=PrimeQ[(n-1)/2-3]; lst={};Do[p=Prime[n];If[f[p],AppendTo[lst,p]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009 *)
    s={11,13};Do[If[PrimeQ[n]&&PrimeQ[(n-7)/2],AppendTo[s,n]],{n,17,10^3,6}];s (* Zak Seidov, Oct 23 2009 *)
    Select[2#+7&/@Prime[Range[200]],PrimeQ] (* Harvey P. Dale, Dec 15 2010 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, if (isprime(q=2*p+7), print1(q, ", ")););} \\ Michel Marcus, Nov 08 2014

Formula

a(n) = 7 + 2*A023206(n). - R. J. Mathar, Oct 05 2009

Extensions

1089 replaced with 1049 by R. J. Mathar, Oct 05 2009
Showing 1-8 of 8 results.