cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A046140 Duplicate of A023241.

Original entry on oeis.org

5, 7, 11, 17, 31, 41, 47, 61, 67, 97, 101, 151, 167, 227, 251, 257, 271, 347, 367, 557, 587
Offset: 1

Views

Author

Keywords

A358572 Smallest prime p in a sexy prime triple such that (p-3)/2 is also the smallest prime in a sexy prime triple (A023241).

Original entry on oeis.org

17, 97, 1117, 1217, 2897, 130337, 188857, 207997, 221197, 324517, 610817, 900577, 1090877, 1452317, 1719857, 1785097, 2902477, 3069917, 3246317, 4095097, 4536517, 4977097, 5153537, 5517637, 5745557, 6399677, 7168277, 7351957, 7588697, 7661077, 8651537, 8828497, 9153337
Offset: 1

Views

Author

Lamine Ngom, Nov 23 2022

Keywords

Comments

Also numbers m such that m-4, m-1, m+5, m+8, m+11 and m+20 cannot be represented as x*y + x + y, with x >= y > 1 (A254636).
Subsequence of A358571.
Number of terms < 10^k: 0, 2, 2, 5, 5, 12, 34, 150, 655, ...
All terms p and (p-3)/2 have a final decimal digit of 7. This follows from considering possibilities modulo 10 and implies p + 18 and (p-3)/2 + 18 are divisible by 5 and hence composite. Both p and (p-3)/2 are therefore also terms of A046118. - Andrew Howroyd, Dec 31 2022

Examples

			97 is the smallest prime in the sexy prime triple (97, 103, 109), and the triple (47 = (97 - 3)/2, 47 + 6, 47 + 12) forms another sexy prime triple. Hence 97 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[700000]], AllTrue[Join[# + {6,12}, (#-3)/2 + {0, 6, 12}], PrimeQ] &] (* Amiram Eldar, Nov 23 2022 *)
  • PARI
    istriple(p)={isprime(p) && isprime(p+6) && isprime(p+12)}
    isok(p)={istriple(p) && istriple((p-3)/2)}
    { forprime(p=1,10^7,if(isok(p), print1(p, ", "))) } \\ Andrew Howroyd, Dec 30 2022

A227284 First primes of arithmetic progressions of 9 primes each with the common difference 210.

Original entry on oeis.org

199, 409, 3499, 10859, 564973, 1288607, 1302281, 2358841, 3600521, 4047803, 17160749, 20751193, 23241473, 44687567, 50655739, 53235151, 87662609, 100174043, 103468003, 110094161, 180885839, 187874017, 192205147, 221712811, 243051733, 243051943, 304570103
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
When a(n+1) = a(n) + 210, as for n = 1, 25, ..., then a(n) is in A094220: start of AP of 10 primes with common distance 210. - M. F. Hasler, Jan 02 2020

Examples

			p = 409 then the AP-9 is {409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089} with the difference 9# = 2*3*5*7 = 210.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 210; ap9p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d}] == {True, True, True, True, True, True, True, True, True}, AppendTo[ap9p, p]], {p, 3, 10^9, 2}]; ap9p
  • PARI
    v=[1..8]*210; forprime(p=1,,for(i=1,#v,isprime(p+v[i])||next(2));print1(p",")) \\ M. F. Hasler, Jan 02 2020

A227281 First primes of arithmetic progressions of 5 primes each with the common difference 30.

Original entry on oeis.org

7, 11, 37, 107, 137, 151, 277, 359, 389, 401, 541, 557, 571, 877, 1033, 1493, 1663, 2221, 2251, 2879, 3271, 6269, 6673, 6703, 7457, 7487, 9431, 10103, 10133, 10567, 11981, 12457, 12973, 14723, 17047, 19387, 24061, 25643, 25673, 26861, 26891, 27337, 27367
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
For k = 5, we have d = 3# = 6 and there is ONLY one AP-5 with this difference: {5, 11, 17, 23, 29}.

Examples

			p = 11 then {11, 11 + 1*30, 11 + 2*30, 11 + 3*30, 11 + 4*30} = {11, 41, 71, 101, 131}, which is 5 primes in arithmetic progression with the difference 5# = 30.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 30; ap5p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d}] == {True, True, True, True, True}, AppendTo[ap5p, p]], {p, 3, 25000, 2}]; ap5p

A227282 First primes of arithmetic progressions of 7 primes each with the common difference 210.

Original entry on oeis.org

47, 179, 199, 409, 619, 829, 881, 1091, 1453, 3499, 3709, 3919, 10529, 10627, 10837, 10859, 11069, 11279, 14423, 20771, 22697, 30097, 30307, 31583, 31793, 32363, 41669, 75703, 93281, 95747, 120661, 120737, 120871, 120947, 129287, 140603, 153319, 153529
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
For k = 7, we have d = 5*5# = 150 and there is ONLY one AP-7 with this difference: {7, 157, 307, 457, 607, 757, 907}.

Examples

			p = 179 then the AP-5 is {179, 389, 599, 809, 1019, 1229, 1439} with the difference 7# = 210.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 210; ap7p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d}] == {True, True, True, True, True, True, True}, AppendTo[ap7p, p]], {p, 3, 10^9, 2}]; ap7p
    Select[Prime[Range[15000]],And@@PrimeQ[NestList[210+#&,#,6]]&] (* Harvey P. Dale, Nov 16 2013 *)
  • PARI
    is(p)=forstep(k=p,p+1260,210,if(!isprime(k),return(0)));1 \\ Charles R Greathouse IV, Dec 19 2013

A227283 First primes of arithmetic progressions of 8 primes each with the common difference 210.

Original entry on oeis.org

199, 409, 619, 881, 3499, 3709, 10627, 10859, 11069, 30097, 31583, 120661, 120737, 153319, 182537, 471089, 487391, 564973, 565183, 825991, 1010747, 1280623, 1288607, 1288817, 1302281, 1302491, 1395209, 1982599, 2358841, 2359051, 2439571, 3161017, 3600521
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 210; ap8p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d}] == {True, True, True, True, True, True, True, True}, AppendTo[ap8p, p]], {p, 3, 3000000, 2}]; ap8p
    Select[Prime[Range[260000]],AllTrue[NestList[#+210&,#,7],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 03 2018 *)

A227285 First primes of arithmetic progressions of 11 primes each with the common difference 2310.

Original entry on oeis.org

60858179, 186874511, 291297353, 1445838451, 2943023729, 4597225889, 7024895393, 8620560607, 8656181357, 19033631401, 20711172773, 25366690189, 27187846201, 32022299977, 34351919351
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an AP-k is conjectured to be k# for all k > 7.
16th term is greater than 40*10^9.

Examples

			p = 186874511 then the AP-11 is {186874511, 186876821, 186879131, 186881441, 186883751, 186886061, 186888371, 186890681, 186892991, 186895301, 186897611} with the difference 11# = 2*3*5*7*11 = 2310.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 2310; ap11p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d, p + 9*d, p + 10*d}] == {True, True, True, True, True, True, True, True, True, True, True}, AppendTo[ap11p, p]], {p, 3, 40*10^9, 2}]; ap11p
    ap11Q[n_]:=AllTrue[Rest[NestList[2310+#&,n,10]],PrimeQ]; Select[Prime[ Range[ 148*10^7]],ap11Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* The program will take a long time to run *) (* Harvey P. Dale, Oct 27 2019 *)

Extensions

a(16)-a(21) from Zak Seidov, Jul 07 2014

A227286 First primes of arithmetic progressions of 13 primes each with the common difference 30030.

Original entry on oeis.org

14933623, 2085471361, 132420258931, 185041386139, 682539280751, 834172298383, 834172328413, 856378247603, 856378277633, 888867525577, 931115864233, 1059709587163, 1345030977911, 1360910561113, 1578280523803, 1973348047529, 1988253536611, 2083502941613
Offset: 1

Views

Author

Sameen Ahmed Khan, Jul 05 2013

Keywords

Comments

The minimal possible difference in an arithmetic progression of k primes is conjectured to be k# = A034386(k) for all k > 7. 13# = 30030.

Examples

			p = 2085471361 then the AP-13 is {2085471361, 2085501391, 2085531421, 2085561451, 2085591481, 2085621511, 2085651541, 2085681571, 2085711601, 2085741631, 2085771661, 2085801691, 2085831721} with the difference 13# = 2*3*5*7*11*13 = 30030.
		

Crossrefs

Programs

  • Mathematica
    Clear[p]; d = 30030; ap13p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d, p + 9*d, p + 10*d, p + 11*d, p + 12*d}] == {True, True, True, True, True, True, True, True, True, True, True, True, True}, AppendTo[ap13p, p]], {p, 3, 41*10^9, 2}]; ap13p

Extensions

More terms from Jens Kruse Andersen, Jun 27 2014

A279765 Primes p such that p+24 and p+48 are also primes.

Original entry on oeis.org

5, 13, 19, 23, 59, 79, 83, 89, 103, 149, 233, 269, 283, 349, 373, 409, 419, 439, 443, 499, 523, 569, 593, 653, 709, 773, 829, 839, 859, 863, 929, 1039, 1069, 1259, 1279, 1399, 1423, 1559, 1699, 1753, 1823, 1949, 1979, 2039, 2063, 2089, 2113, 2309, 2333, 2393
Offset: 1

Views

Author

Gerhard Kirchner, Dec 18 2016

Keywords

Comments

Subsequence of A033560. The triples have the form (p,p+d,p+2d). The current sequence (d=24) continues A023241 (d=6), A185022 (d=12) and A156109 (d=18). The frequencies of such triples and the triple (p, p+3±1, p+6) in A007529 do not differ very much (see table in the link "comparison of triples"). For creating the b-file I used a file of prime differences, divided by 2 (extension of A028334). For filling the table I analyzed primes up to 10^9.
Annotation: The algorithm using a file of primes or prime differences is not difficult but not as easy as using a function like isprime(n). On the other hand, such a function needs computing time which is not negligible for large numbers.

Examples

			First term: 5, 5 + 24 = 29 and 5 + 48 = 53 are all primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@500, PrimeQ[# + 24] && PrimeQ[# + 48] &] (* Robert G. Wilson v, Dec 18 2016 *)
  • PARI
    is(n) = for(k=0, 2, if(!ispseudoprime(n+24*k), return(0))); 1 \\ Felix Fröhlich, Dec 26 2016

A377317 Numbers k such that prime(k), prime(k)+6, and prime(k)+12 are primes.

Original entry on oeis.org

3, 4, 5, 7, 11, 13, 15, 18, 19, 25, 26, 36, 39, 49, 54, 55, 58, 69, 73, 102, 107, 110, 111, 116, 118, 129, 160, 164, 182, 184, 187, 194, 199, 206, 210, 218, 225, 229, 234, 236, 252, 253, 260, 271, 272, 275, 284, 285, 291, 300, 321, 339, 351, 352, 358, 387, 388
Offset: 1

Views

Author

Kritsada Moomuang, Oct 24 2024

Keywords

Examples

			5 is in this sequence because: prime(5) = 11, and 11+6 = 17 and 11+12 = 23 are primes.
		

Crossrefs

Supersequence of A377318.

Programs

  • Mathematica
    Select[Range[1, PrimePi[3000]], PrimeQ[Prime[#] + 6] && PrimeQ[Prime[#] + 12] &]
  • PARI
    for(k=1, primepi(3000), p = prime(k); if(isprime(p+6) && isprime(p+12), print(k)))

Formula

a(n) = pi(A023241(n)).
Showing 1-10 of 12 results. Next