A046140 Duplicate of A023241.
5, 7, 11, 17, 31, 41, 47, 61, 67, 97, 101, 151, 167, 227, 251, 257, 271, 347, 367, 557, 587
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
97 is the smallest prime in the sexy prime triple (97, 103, 109), and the triple (47 = (97 - 3)/2, 47 + 6, 47 + 12) forms another sexy prime triple. Hence 97 is in the sequence.
Select[Prime[Range[700000]], AllTrue[Join[# + {6,12}, (#-3)/2 + {0, 6, 12}], PrimeQ] &] (* Amiram Eldar, Nov 23 2022 *)
istriple(p)={isprime(p) && isprime(p+6) && isprime(p+12)} isok(p)={istriple(p) && istriple((p-3)/2)} { forprime(p=1,10^7,if(isok(p), print1(p, ", "))) } \\ Andrew Howroyd, Dec 30 2022
p = 409 then the AP-9 is {409, 619, 829, 1039, 1249, 1459, 1669, 1879, 2089} with the difference 9# = 2*3*5*7 = 210.
Clear[p]; d = 210; ap9p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d}] == {True, True, True, True, True, True, True, True, True}, AppendTo[ap9p, p]], {p, 3, 10^9, 2}]; ap9p
v=[1..8]*210; forprime(p=1,,for(i=1,#v,isprime(p+v[i])||next(2));print1(p",")) \\ M. F. Hasler, Jan 02 2020
p = 11 then {11, 11 + 1*30, 11 + 2*30, 11 + 3*30, 11 + 4*30} = {11, 41, 71, 101, 131}, which is 5 primes in arithmetic progression with the difference 5# = 30.
Clear[p]; d = 30; ap5p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d}] == {True, True, True, True, True}, AppendTo[ap5p, p]], {p, 3, 25000, 2}]; ap5p
p = 179 then the AP-5 is {179, 389, 599, 809, 1019, 1229, 1439} with the difference 7# = 210.
Clear[p]; d = 210; ap7p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d}] == {True, True, True, True, True, True, True}, AppendTo[ap7p, p]], {p, 3, 10^9, 2}]; ap7p Select[Prime[Range[15000]],And@@PrimeQ[NestList[210+#&,#,6]]&] (* Harvey P. Dale, Nov 16 2013 *)
is(p)=forstep(k=p,p+1260,210,if(!isprime(k),return(0)));1 \\ Charles R Greathouse IV, Dec 19 2013
Clear[p]; d = 210; ap8p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d}] == {True, True, True, True, True, True, True, True}, AppendTo[ap8p, p]], {p, 3, 3000000, 2}]; ap8p Select[Prime[Range[260000]],AllTrue[NestList[#+210&,#,7],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 03 2018 *)
p = 186874511 then the AP-11 is {186874511, 186876821, 186879131, 186881441, 186883751, 186886061, 186888371, 186890681, 186892991, 186895301, 186897611} with the difference 11# = 2*3*5*7*11 = 2310.
Clear[p]; d = 2310; ap11p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d, p + 9*d, p + 10*d}] == {True, True, True, True, True, True, True, True, True, True, True}, AppendTo[ap11p, p]], {p, 3, 40*10^9, 2}]; ap11p ap11Q[n_]:=AllTrue[Rest[NestList[2310+#&,n,10]],PrimeQ]; Select[Prime[ Range[ 148*10^7]],ap11Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* The program will take a long time to run *) (* Harvey P. Dale, Oct 27 2019 *)
p = 2085471361 then the AP-13 is {2085471361, 2085501391, 2085531421, 2085561451, 2085591481, 2085621511, 2085651541, 2085681571, 2085711601, 2085741631, 2085771661, 2085801691, 2085831721} with the difference 13# = 2*3*5*7*11*13 = 30030.
Clear[p]; d = 30030; ap13p = {}; Do[If[PrimeQ[{p, p + d, p + 2*d, p + 3*d, p + 4*d, p + 5*d, p + 6*d, p + 7*d, p + 8*d, p + 9*d, p + 10*d, p + 11*d, p + 12*d}] == {True, True, True, True, True, True, True, True, True, True, True, True, True}, AppendTo[ap13p, p]], {p, 3, 41*10^9, 2}]; ap13p
First term: 5, 5 + 24 = 29 and 5 + 48 = 53 are all primes.
Select[Prime@Range@500, PrimeQ[# + 24] && PrimeQ[# + 48] &] (* Robert G. Wilson v, Dec 18 2016 *)
is(n) = for(k=0, 2, if(!ispseudoprime(n+24*k), return(0))); 1 \\ Felix Fröhlich, Dec 26 2016
5 is in this sequence because: prime(5) = 11, and 11+6 = 17 and 11+12 = 23 are primes.
Select[Range[1, PrimePi[3000]], PrimeQ[Prime[#] + 6] && PrimeQ[Prime[#] + 12] &]
for(k=1, primepi(3000), p = prime(k); if(isprime(p+6) && isprime(p+12), print(k)))
Comments