cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A212364 Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 5).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 23, 35, 57, 96, 161, 264, 425, 682, 1106, 1821, 3030, 5055, 8412, 13956, 23145, 38487, 64261, 107673, 180762, 303651, 510187, 857692, 1443597, 2433495, 4108299, 6943862, 11746362, 19883655, 33681015, 57096874, 96874214
Offset: 0

Views

Author

Alois P. Heinz, May 10 2012

Keywords

Examples

			a(0) = 1: the empty path.
a(1) = 1: UD.
a(5) = 1: UDUDUDUDUD.
a(6) = 2: UDUDUDUDUDUD, UUUUUUDDDDDD.
a(7) = 4: UDUDUDUDUDUDUD, UDUUUUUUDDDDDD, UUUUUUDDDDDDUD, UUUUUUDUDDDDDD.
a(8) = 7: UDUDUDUDUDUDUDUD, UDUDUUUUUUDDDDDD, UDUUUUUUDDDDDDUD, UDUUUUUUDUDDDDDD, UUUUUUDDDDDDUDUD, UUUUUUDUDDDDDDUD, UUUUUUDUDUDDDDDD.
		

Crossrefs

Column k=5 of A212363.
Cf. A023432 (m=3), A023427 (m=4), this sequence (m=5), A212386(m=6).

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1) +add(a(k)*a(n-5-k), k=1..n-5))
        end:
    seq(a(n), n=0..50);
    # second Maple program:
    a:= n-> coeff(series(RootOf(A=1+A*(x-x^5*(1-A)), A), x, n+1), x, n):
    seq(a(n), n=0..50);
  • Mathematica
    CoefficientList[Series[(1-x+x^5-Sqrt[-4*x^5+(1-x+x^5)^2])/(2*x^5),{x,0,20}],x] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

G.f. satisfies: A(x) = 1+A(x)*(x-x^5*(1-A(x))).
a(n) = a(n-1) + Sum_{k=1..n-5} a(k)*a(n-5-k) if n>0; a(0) = 1.
Recurrence: (n+5)*a(n) = (2*n+7)*a(n-1) - (n+2)*a(n-2) + (2*n-5)*a(n-5) + 2*(n-4)*a(n-6) - (n-10)*a(n-10). - Vaclav Kotesovec, Mar 20 2014
a(n) = Sum_{k=0..(n-1)/4} C(n-4*k,k)*C(n-4*k,k+1)/(n-4*k) for n>0, a(0)=1. - Vladimir Kruchinin, Jan 21 2019

A212363 Number A(n,k) of Dyck n-paths all of whose ascents and descents have lengths equal to 1+k*m (m>=0); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 14, 1, 1, 1, 1, 1, 4, 42, 1, 1, 1, 1, 1, 2, 8, 132, 1, 1, 1, 1, 1, 1, 4, 17, 429, 1, 1, 1, 1, 1, 1, 2, 7, 37, 1430, 1, 1, 1, 1, 1, 1, 1, 4, 12, 82, 4862, 1, 1, 1, 1, 1, 1, 1, 2, 7, 22, 185, 16796, 1
Offset: 0

Views

Author

Alois P. Heinz, May 10 2012

Keywords

Examples

			A(3,0) = 1: UDUDUD.
A(3,1) = 5: UDUDUD, UDUUDD, UUDDUD, UUDUDD, UUUDDD.
A(4,2) = 4: UDUDUDUD, UDUUUDDD, UUUDDDUD, UUUDUDDD.
A(5,2) = 8: UDUDUDUDUD, UDUDUUUDDD, UDUUUDDDUD, UDUUUDUDDD, UUUDDDUDUD, UUUDUDDDUD, UUUDUDUDDD, UUUUUDDDDD.
A(5,3) = 4: UDUDUDUDUD, UDUUUUDDDD, UUUUDDDDUD, UUUUDUDDDD.
Square array A(n,k) begins:
  1,   1,  1,  1,  1,  1,  1,  1, ...
  1,   1,  1,  1,  1,  1,  1,  1, ...
  1,   2,  1,  1,  1,  1,  1,  1, ...
  1,   5,  2,  1,  1,  1,  1,  1, ...
  1,  14,  4,  2,  1,  1,  1,  1, ...
  1,  42,  8,  4,  2,  1,  1,  1, ...
  1, 132, 17,  7,  4,  2,  1,  1, ...
  1, 429, 37, 12,  7,  4,  2,  1, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember;
          `if`(k=0, 1, `if`(n=0, 1, A(n-1, k)
                       +add(A(j, k)*A(n-k-j, k), j=1..n-k)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..15);
    # second Maple program:
    A:= (n, k)-> `if`(k=0, 1, coeff(series(RootOf(
                  A||k=1+A||k*(x-x^k*(1-A||k)), A||k), x, n+1), x, n)):
    seq(seq(A(n, d-n), n=0..d), d=0..15);
  • Mathematica
    A[n_, k_] := A[n, k] = If[k == 0, 1, If[n == 0, 1, A[n-1, k] + Sum[A[j, k]*A[n-k-j, k], {j, 1, n-k}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from first Maple program *)

Formula

G.f. of column k>0 satisfies: A_k(x) = 1+A_k(x)*(x-x^k*(1-A_k(x))), g.f. of column k=0: A_0(x) = 1/(1-x).
A(n,k) = A(n-1,k) + Sum_{j=1..n-k} A(j,k)*A(n-k-j,k) for n,k>0; A(n,0) = A(0,k) = 1.
G.f. of column k > 0: (1 - x + x^k - sqrt((1 - x + x^k)^2 - 4*x^k)) / (2*x^k). - Vaclav Kotesovec, Sep 02 2014

A365695 G.f. satisfies A(x) = 1 + x^3*A(x)^5 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 6, 12, 19, 62, 156, 318, 852, 2254, 5262, 13441, 35543, 88772, 226880, 596937, 1539188, 3980364, 10468270, 27410289, 71702956, 189169352, 499529048, 1318355542, 3493861461, 9278408639, 24647900618, 65620808508, 175037591303, 467277998136
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, n-3*k)*binomial(n+2*k+1, k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,n-3*k) * binomial(n+2*k+1,k) / (n+2*k+1).

A365694 G.f. satisfies A(x) = 1 + x^3*A(x)^2 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 6, 10, 20, 42, 84, 170, 354, 740, 1549, 3269, 6945, 14811, 31711, 68177, 147091, 318313, 690837, 1503351, 3279445, 7169907, 15708485, 34482475, 75830981, 167042763, 368548926, 814341362, 1801867812, 3992172298, 8855912464, 19668236110
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2/(1 + x + Sqrt[1 + x*(-2 + x - 4*x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 16 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, n-3*k)*binomial(n-k+1, k)/(n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,n-3*k) * binomial(n-k+1,k) / (n-k+1).
G.f.: A(x) = 2/(1 + x + sqrt(1 + x*(-2 + x - 4*x^2))). - Vaclav Kotesovec, Sep 16 2023

A365757 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^3*A(x)^5).

Original entry on oeis.org

1, 1, 1, 1, 2, 8, 29, 86, 229, 619, 1836, 5846, 18802, 59356, 185187, 581476, 1855412, 5997965, 19491730, 63395718, 206433172, 674452128, 2213463944, 7293253791, 24098638133, 79791002807, 264698873350, 879945619711, 2931486913728, 9785457123420, 32721317536787
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(n+2*k+1, n-3*k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,k) * binomial(n+2*k+1,n-3*k) / (n+2*k+1).

A216116 G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x^4*A(x)).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 7, 11, 17, 28, 49, 87, 152, 262, 453, 794, 1408, 2507, 4462, 7943, 14179, 25415, 45713, 82398, 148731, 268859, 486890, 883411, 1605582, 2922259, 5325377, 9716564, 17750332, 32464980, 59443403, 108951953, 199886003, 367052947, 674620772, 1240963218
Offset: 0

Views

Author

Paul D. Hanna, Oct 29 2012

Keywords

Examples

			A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 11*x^7 + 17*x^8 + 28*x^9 +...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^3)*x +
(1 + 2^2*x^3 + x^6)*x^2/2 +
(1 + 3^2*x^3 + 3^2*x^6 + x^9)*x^3/3 +
(1 + 4^2*x^3 + 6^2*x^6 + 4^2*x^9 + x^12)*x^4/4 +
(1 + 5^2*x^3 + 10^2*x^6 + 10^2*x^9 + 5^2*x^12 + x^15)*x^5/5 +
(1 + 6^2*x^3 + 15^2*x^6 + 20^2*x^9 + 15^2*x^12 + 6^2*x^15 + x^18)*x^6/6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x^4*A)+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, sum(j=0, m, binomial(m, j)^2*(x+x*O(x^n))^(3*j))*x^m/m)), n)}
    
  • PARI
    {a(n)=polcoeff(((1-x-x^4) - sqrt((1-x-x^4)^2 - 4*x^5 +x^6*O(x^n)))/(2*x^5), n)}
    for(n=0,45,print1(a(n),", "))

Formula

G.f.: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(3*k) ).
G.f.: A(x) = ((1-x-x^4) - sqrt((1-x-x^4)^2 - 4*x^5))/(2*x^5).
a(n) = A023427(n+1) for n>=0.

A275448 The number of weakly alternating bargraphs of semiperimeter n. A bargraph is said to be weakly alternating if its ascents and descents alternate. An ascent (descent) is a maximal sequence of consecutive U (D) steps.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 28, 65, 146, 327, 749, 1756, 4165, 9913, 23652, 56687, 136627, 330969, 804915, 1963830, 4805523, 11793046, 29019930, 71589861, 177006752, 438561959, 1088714711, 2707615555, 6745272783, 16830750107, 42058592797, 105248042792
Offset: 2

Views

Author

Keywords

Examples

			a(4)=3 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding drawings show that only [1,1,1],[2,2], and [3] lead to weakly alternating bargraphs.
		

Crossrefs

Programs

  • Maple
    g := ((1-3*z+3*z^2-sqrt((1-3*z+z^2)*(1-3*z+5*z^2-4*z^3)))*(1/2))/(z*(1-z)): gser:= series(g,z=0,43): seq(coeff(gser,z,n), n=2..40);
  • Mathematica
    terms = 32;
    g[z_] = ((1 - 3z + 3z^2 - Sqrt[(1 - 3z + z^2)(1 - 3z + 5z^2 - 4z^3)])*(1/2) )/(z(1-z));
    Drop[CoefficientList[g[z] + O[z]^(terms+2), z], 2] (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.: g(z) = (1-3z+3z^2 - Q)/(2z(1-z)), where Q = sqrt((1-3z+z^2)(1-3z+5z^2-4z^3)).
D-finite with recurrence (n+1)*a(n) +(-7*n+2)*a(n-1) +3*(7*n-11)*a(n-2) +(-37*n+107)*a(n-3) +3*(13*n-54)*a(n-4) +3*(-7*n+37)*a(n-5) +2*(2*n-13)*a(n-6)=0. - R. J. Mathar, Jul 22 2022

A296201 Expansion of 1/(1 - x/(1 - x/(1 - x^2/(1 - x/(1 - x^3/(1 - x/(1 - x^4/(1 - ...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 50, 120, 290, 704, 1714, 4181, 10212, 24965, 61070, 149458, 365888, 895932, 2194178, 5374262, 13164426, 32248616, 79002180, 193544446, 474168003, 1161691893, 2846131055, 6973047572, 17084140245, 41856763371, 102550935614, 251254982356, 615588531011, 1508227753087, 3695249380509
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 34; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^(1 + k (1 + (-1)^k)/4), 1, {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

a(n) ~ c * d^n, where d = 2.450066970712861209761227155593662591019701927336233634485900133440192... and c = 0.21656595617747023258115906735909123622190252865232858964820650877171... - Vaclav Kotesovec, Sep 18 2021

A365756 G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^3*A(x)^4).

Original entry on oeis.org

1, 1, 1, 1, 2, 7, 22, 58, 142, 363, 1014, 2966, 8645, 24824, 71189, 206742, 609159, 1809493, 5388804, 16073002, 48092377, 144532884, 436168716, 1320372837, 4006489208, 12183544414, 37132838866, 113426618425, 347191793705, 1064688271730, 3270387354434
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(n+k+1, n-3*k)/(n+k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k-1,k) * binomial(n+k+1,n-3*k) / (n+k+1).
Showing 1-9 of 9 results.