A212364
Number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 5).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 4, 7, 11, 16, 23, 35, 57, 96, 161, 264, 425, 682, 1106, 1821, 3030, 5055, 8412, 13956, 23145, 38487, 64261, 107673, 180762, 303651, 510187, 857692, 1443597, 2433495, 4108299, 6943862, 11746362, 19883655, 33681015, 57096874, 96874214
Offset: 0
a(0) = 1: the empty path.
a(1) = 1: UD.
a(5) = 1: UDUDUDUDUD.
a(6) = 2: UDUDUDUDUDUD, UUUUUUDDDDDD.
a(7) = 4: UDUDUDUDUDUDUD, UDUUUUUUDDDDDD, UUUUUUDDDDDDUD, UUUUUUDUDDDDDD.
a(8) = 7: UDUDUDUDUDUDUDUD, UDUDUUUUUUDDDDDD, UDUUUUUUDDDDDDUD, UDUUUUUUDUDDDDDD, UUUUUUDDDDDDUDUD, UUUUUUDUDDDDDDUD, UUUUUUDUDUDDDDDD.
-
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1) +add(a(k)*a(n-5-k), k=1..n-5))
end:
seq(a(n), n=0..50);
# second Maple program:
a:= n-> coeff(series(RootOf(A=1+A*(x-x^5*(1-A)), A), x, n+1), x, n):
seq(a(n), n=0..50);
-
CoefficientList[Series[(1-x+x^5-Sqrt[-4*x^5+(1-x+x^5)^2])/(2*x^5),{x,0,20}],x] (* Vaclav Kotesovec, Mar 20 2014 *)
A212363
Number A(n,k) of Dyck n-paths all of whose ascents and descents have lengths equal to 1+k*m (m>=0); square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 14, 1, 1, 1, 1, 1, 4, 42, 1, 1, 1, 1, 1, 2, 8, 132, 1, 1, 1, 1, 1, 1, 4, 17, 429, 1, 1, 1, 1, 1, 1, 2, 7, 37, 1430, 1, 1, 1, 1, 1, 1, 1, 4, 12, 82, 4862, 1, 1, 1, 1, 1, 1, 1, 2, 7, 22, 185, 16796, 1
Offset: 0
A(3,0) = 1: UDUDUD.
A(3,1) = 5: UDUDUD, UDUUDD, UUDDUD, UUDUDD, UUUDDD.
A(4,2) = 4: UDUDUDUD, UDUUUDDD, UUUDDDUD, UUUDUDDD.
A(5,2) = 8: UDUDUDUDUD, UDUDUUUDDD, UDUUUDDDUD, UDUUUDUDDD, UUUDDDUDUD, UUUDUDDDUD, UUUDUDUDDD, UUUUUDDDDD.
A(5,3) = 4: UDUDUDUDUD, UDUUUUDDDD, UUUUDDDDUD, UUUUDUDDDD.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 1, 1, 1, 1, 1, 1, ...
1, 5, 2, 1, 1, 1, 1, 1, ...
1, 14, 4, 2, 1, 1, 1, 1, ...
1, 42, 8, 4, 2, 1, 1, 1, ...
1, 132, 17, 7, 4, 2, 1, 1, ...
1, 429, 37, 12, 7, 4, 2, 1, ...
Columns k=0-10 give:
A000012,
A000108,
A004148,
A023432,
A023427,
A212364,
A212365,
A212366,
A212367,
A212368,
A212369.
-
A:= proc(n, k) option remember;
`if`(k=0, 1, `if`(n=0, 1, A(n-1, k)
+add(A(j, k)*A(n-k-j, k), j=1..n-k)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..15);
# second Maple program:
A:= (n, k)-> `if`(k=0, 1, coeff(series(RootOf(
A||k=1+A||k*(x-x^k*(1-A||k)), A||k), x, n+1), x, n)):
seq(seq(A(n, d-n), n=0..d), d=0..15);
-
A[n_, k_] := A[n, k] = If[k == 0, 1, If[n == 0, 1, A[n-1, k] + Sum[A[j, k]*A[n-k-j, k], {j, 1, n-k}]]]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from first Maple program *)
A365695
G.f. satisfies A(x) = 1 + x^3*A(x)^5 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 6, 12, 19, 62, 156, 318, 852, 2254, 5262, 13441, 35543, 88772, 226880, 596937, 1539188, 3980364, 10468270, 27410289, 71702956, 189169352, 499529048, 1318355542, 3493861461, 9278408639, 24647900618, 65620808508, 175037591303, 467277998136
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-2*k-1, n-3*k)*binomial(n+2*k+1, k)/(n+2*k+1));
A365694
G.f. satisfies A(x) = 1 + x^3*A(x)^2 / (1 - x*A(x)).
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 3, 6, 10, 20, 42, 84, 170, 354, 740, 1549, 3269, 6945, 14811, 31711, 68177, 147091, 318313, 690837, 1503351, 3279445, 7169907, 15708485, 34482475, 75830981, 167042763, 368548926, 814341362, 1801867812, 3992172298, 8855912464, 19668236110
Offset: 0
-
CoefficientList[Series[2/(1 + x + Sqrt[1 + x*(-2 + x - 4*x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 16 2023 *)
-
a(n) = sum(k=0, n\3, binomial(n-2*k-1, n-3*k)*binomial(n-k+1, k)/(n-k+1));
A365757
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^3*A(x)^5).
Original entry on oeis.org
1, 1, 1, 1, 2, 8, 29, 86, 229, 619, 1836, 5846, 18802, 59356, 185187, 581476, 1855412, 5997965, 19491730, 63395718, 206433172, 674452128, 2213463944, 7293253791, 24098638133, 79791002807, 264698873350, 879945619711, 2931486913728, 9785457123420, 32721317536787
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(n+2*k+1, n-3*k)/(n+2*k+1));
A216116
G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x^4*A(x)).
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 7, 11, 17, 28, 49, 87, 152, 262, 453, 794, 1408, 2507, 4462, 7943, 14179, 25415, 45713, 82398, 148731, 268859, 486890, 883411, 1605582, 2922259, 5325377, 9716564, 17750332, 32464980, 59443403, 108951953, 199886003, 367052947, 674620772, 1240963218
Offset: 0
A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 11*x^7 + 17*x^8 + 28*x^9 +...
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x^3)*x +
(1 + 2^2*x^3 + x^6)*x^2/2 +
(1 + 3^2*x^3 + 3^2*x^6 + x^9)*x^3/3 +
(1 + 4^2*x^3 + 6^2*x^6 + 4^2*x^9 + x^12)*x^4/4 +
(1 + 5^2*x^3 + 10^2*x^6 + 10^2*x^9 + 5^2*x^12 + x^15)*x^5/5 +
(1 + 6^2*x^3 + 15^2*x^6 + 20^2*x^9 + 15^2*x^12 + 6^2*x^15 + x^18)*x^6/6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=(1+x*A)*(1+x^4*A)+x*O(x^n)); polcoeff(A, n)}
-
{a(n)=polcoeff(exp(sum(m=1, n+1, sum(j=0, m, binomial(m, j)^2*(x+x*O(x^n))^(3*j))*x^m/m)), n)}
-
{a(n)=polcoeff(((1-x-x^4) - sqrt((1-x-x^4)^2 - 4*x^5 +x^6*O(x^n)))/(2*x^5), n)}
for(n=0,45,print1(a(n),", "))
A275448
The number of weakly alternating bargraphs of semiperimeter n. A bargraph is said to be weakly alternating if its ascents and descents alternate. An ascent (descent) is a maximal sequence of consecutive U (D) steps.
Original entry on oeis.org
1, 2, 3, 4, 6, 12, 28, 65, 146, 327, 749, 1756, 4165, 9913, 23652, 56687, 136627, 330969, 804915, 1963830, 4805523, 11793046, 29019930, 71589861, 177006752, 438561959, 1088714711, 2707615555, 6745272783, 16830750107, 42058592797, 105248042792
Offset: 2
a(4)=3 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and the corresponding drawings show that only [1,1,1],[2,2], and [3] lead to weakly alternating bargraphs.
-
g := ((1-3*z+3*z^2-sqrt((1-3*z+z^2)*(1-3*z+5*z^2-4*z^3)))*(1/2))/(z*(1-z)): gser:= series(g,z=0,43): seq(coeff(gser,z,n), n=2..40);
-
terms = 32;
g[z_] = ((1 - 3z + 3z^2 - Sqrt[(1 - 3z + z^2)(1 - 3z + 5z^2 - 4z^3)])*(1/2) )/(z(1-z));
Drop[CoefficientList[g[z] + O[z]^(terms+2), z], 2] (* Jean-François Alcover, Aug 07 2018 *)
A296201
Expansion of 1/(1 - x/(1 - x/(1 - x^2/(1 - x/(1 - x^3/(1 - x/(1 - x^4/(1 - ...)))))))), a continued fraction.
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 50, 120, 290, 704, 1714, 4181, 10212, 24965, 61070, 149458, 365888, 895932, 2194178, 5374262, 13164426, 32248616, 79002180, 193544446, 474168003, 1161691893, 2846131055, 6973047572, 17084140245, 41856763371, 102550935614, 251254982356, 615588531011, 1508227753087, 3695249380509
Offset: 0
-
nmax = 34; CoefficientList[Series[1/(1 + ContinuedFractionK[-x^(1 + k (1 + (-1)^k)/4), 1, {k, 0, nmax}]), {x, 0, nmax}], x]
A365756
G.f. satisfies A(x) = 1 + x*A(x) / (1 - x^3*A(x)^4).
Original entry on oeis.org
1, 1, 1, 1, 2, 7, 22, 58, 142, 363, 1014, 2966, 8645, 24824, 71189, 206742, 609159, 1809493, 5388804, 16073002, 48092377, 144532884, 436168716, 1320372837, 4006489208, 12183544414, 37132838866, 113426618425, 347191793705, 1064688271730, 3270387354434
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-2*k-1, k)*binomial(n+k+1, n-3*k)/(n+k+1));
Showing 1-9 of 9 results.