A023610 Convolution of Fibonacci numbers and {F(2), F(3), F(4), ...}.
1, 3, 7, 15, 30, 58, 109, 201, 365, 655, 1164, 2052, 3593, 6255, 10835, 18687, 32106, 54974, 93845, 159765, 271321, 459743, 777432, 1312200, 2211025, 3719643, 6248479, 10482351, 17562870, 29391490, 49132669, 82048737, 136884293, 228160495, 379975140, 632293452
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Marcella Anselmo, Giuseppa Castiglione, Manuela Flores, Dora Giammarresi, Maria Madonia, and Sabrina Mantaci, Hypercubes and Isometric Words based on Swap and Mismatch Distance, arXiv:2303.09898 [math.CO], 2023.
- Kassie Archer and Noel Bourne, Pattern avoidance in compositions and powers of permutations, arXiv:2505.05218 [math.CO], 2025. See p. 6.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Jean-Luc Baril and José L. Ramírez, Fibonacci and Catalan paths in a wall, 2023.
- Giuseppa Castiglione and Marinella Sciortino, Standard Sturmian words and automata minimization algorithms, Theoretical Computer Science, Volume 601, 11 October 2015, Pages 58-66 ("WORDS 2013").
- Tomislav Došlic and Luka Podrug, Tilings of a Honeycomb Strip and Higher Order Fibonacci Numbers, arXiv:2203.11761 [math.CO], 2022.
- Dmitry Efimov, Hafnian of two-parameter matrices, arXiv:2101.09722 [math.CO], 2021.
- Eric S. Egge, Restricted 3412-Avoiding Involutions: Continued Fractions, Chebyshev Polynomials and Enumerations, arXiv:math/0307050 [math.CO], 2003. Sec. 8.
- Neven Elezović, Asymptotic Expansions of Central Binomial Coefficients and Catalan Numbers, J. Int. Seq. 17 (2014) # 14.2.1.
- Martin Griffiths, A Restricted Random Walk defined via a Fibonacci Process, Journal of Integer Sequences, Vol. 14 (2011), #11.5.4.
- László Németh and László Szalay, Explicit solution of system of two higher-order recurrences, arXiv:2408.12196 [math.NT], 2024. See p. 10.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Crossrefs
Programs
-
Haskell
a023610 n = a023610_list !! n a023610_list = f [1] $ drop 3 a000045_list where f us (v:vs) = (sum $ zipWith (*) us $ tail a000045_list) : f (v:us) vs -- Reinhard Zumkeller, Jan 18 2014
-
Mathematica
Table[Sum[Binomial[n - i, i]*(n - i), {i, 0, n}], {n, 1, 33}] (* Geoffrey Critzer, May 04 2009 *)
-
PARI
a(n)=(n+2)*fibonacci(n+4)/5+(n-1)*fibonacci(n+2)/5 \\ Charles R Greathouse IV, Jun 11 2015
-
Sage
def A023610(): a, b, c, d = 1, 3, 7, 15 while True: yield a a, b, c, d = b, c, d, 2*(d-b)+c-a a = A023610(); [next(a) for i in range(33)] # Peter Luschny, Nov 20 2013
Formula
O.g.f.: (x+1)/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = (1/5)*((n+2)*F(n+4) + (n-1)*F(n+2)), with F(n)=A000045(n). - Ralf Stephan, Jul 06 2003
a(n) = Sum_{k=0..n+1} (n-k+1)*binomial(n-k+1, k). - Paul Barry, Nov 05 2005
Recurrence: a(n+2) = a(n+1) + a(n) + Fib(n+4), n >= 0. For n >= 2, a(n-2) = (-1)^n*((-2n+3)*Fib(-n) - (-n)*Fib(-n-1))/5 = (-1)^n*A010049(-n), the second-order Fibonacci numbers of negative index, where Fib(-n) = (-1)^(n+1)*Fib(n). - Peter Bala, Oct 24 2007
a(n) = (n+1)*F(n+2) - A001629(n+1) where F(n) is the n-th Fibonacci number. - Geoffrey Critzer, Apr 07 2008
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), n >= 4. - L. Edson Jeffery, Mar 29 2013
E.g.f.: exp(x/2)*(5*(5 + 7*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(11 + 15*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023
Comments