cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023610 Convolution of Fibonacci numbers and {F(2), F(3), F(4), ...}.

Original entry on oeis.org

1, 3, 7, 15, 30, 58, 109, 201, 365, 655, 1164, 2052, 3593, 6255, 10835, 18687, 32106, 54974, 93845, 159765, 271321, 459743, 777432, 1312200, 2211025, 3719643, 6248479, 10482351, 17562870, 29391490, 49132669, 82048737, 136884293, 228160495, 379975140, 632293452
Offset: 0

Views

Author

Keywords

Comments

a(n-2) + 1 is the number of (3412,1243)-, (3412,2134)- and (3412,1324)-avoiding involutions in S_n, n>1. - Ralf Stephan, Jul 06 2003
The number of terms in all ordered partitions of (n+1) using only ones and twos. For example, a(3)=15 because there are 15 terms in 1+1+1+1;2+1+1;1+2+1;1+1+2;2+2 - Geoffrey Critzer, Apr 07 2008
a(n) is the number of n-matchings in the graph obtained by a zig-zag triangulation of a convex (2n+1)-gon. Example: a(2)=7 because in the triangulation of the convex pentagon ABCDEA with diagonals AD and AC we have 7 2-matchings: {AB,CD},{AB,DE},{BC,AD},{BC,DE},{BC,EA},{CD,EA} and {DE,AC}. - Emeric Deutsch, Dec 25 2004
Partial sums of A029907. First differences of A002940. - Peter Bala, Oct 24 2007
Equals row sums of triangle A144154. - Gary W. Adamson, Sep 12 2008
Equals the number of 1's in Fibonacci Maximal notation for subsets of
(1, 2, 3, 5, 8, 13, ...) terms. For example (cf. A181630): 4, 5, and 6 are the 3 terms 101, 110, and 111 in Fibonacci Maximal. Total number of 1's for those terms = 7 = a(2). - Gary W. Adamson, Nov 02 2010
a(n) is half the number of strokes needed to draw all the domino tilings of a 2 X (n+2) rectangle. - Roberto Tauraso, Mar 15 2014
a(n) is the total number of 1's in all (n+1)-bit dual Zeckendorf representations of integers (A104326). For example, a(2) = 7 counts the 1's in 101, 110, 111. - Shenghui Yang, Feb 09 2025

Crossrefs

Cf. A000045 (Fibonacci numbers).
Column 1 of triangle A063967.

Programs

  • Haskell
    a023610 n = a023610_list !! n
    a023610_list = f [1] $ drop 3 a000045_list where
       f us (v:vs) = (sum $ zipWith (*) us $ tail a000045_list) : f (v:us) vs
    -- Reinhard Zumkeller, Jan 18 2014
    
  • Mathematica
    Table[Sum[Binomial[n - i, i]*(n - i), {i, 0, n}], {n, 1, 33}] (* Geoffrey Critzer, May 04 2009 *)
  • PARI
    a(n)=(n+2)*fibonacci(n+4)/5+(n-1)*fibonacci(n+2)/5 \\ Charles R Greathouse IV, Jun 11 2015
  • Sage
    def A023610():
        a, b, c, d = 1, 3, 7, 15
        while True:
            yield a
            a, b, c, d = b, c, d, 2*(d-b)+c-a
    a = A023610(); [next(a) for i in range(33)]  # Peter Luschny, Nov 20 2013
    

Formula

O.g.f.: (x+1)/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = (1/5)*((n+2)*F(n+4) + (n-1)*F(n+2)), with F(n)=A000045(n). - Ralf Stephan, Jul 06 2003
a(n) = Sum_{k=0..n+1} (n-k+1)*binomial(n-k+1, k). - Paul Barry, Nov 05 2005
Recurrence: a(n+2) = a(n+1) + a(n) + Fib(n+4), n >= 0. For n >= 2, a(n-2) = (-1)^n*((-2n+3)*Fib(-n) - (-n)*Fib(-n-1))/5 = (-1)^n*A010049(-n), the second-order Fibonacci numbers of negative index, where Fib(-n) = (-1)^(n+1)*Fib(n). - Peter Bala, Oct 24 2007
a(n) = (n+1)*F(n+2) - A001629(n+1) where F(n) is the n-th Fibonacci number. - Geoffrey Critzer, Apr 07 2008
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), n >= 4. - L. Edson Jeffery, Mar 29 2013
a(n+1) = A004798(n) + A000045(n+2) for n >= 0. - John Molokach, Jul 04 2013
a(n) = A001629(n+1) + A001629(n+2). - Philippe Deléham, Oct 30 2013
E.g.f.: exp(x/2)*(5*(5 + 7*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(11 + 15*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023