cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024352 Numbers which are the difference of two positive squares, c^2 - b^2 with 1 <= b < c.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96
Offset: 1

Views

Author

Keywords

Comments

These are the solutions to the equation x^2 + xy = n where y mod 2 = 0, y is positive and x is any positive integer. - Andrew S. Plewe, Oct 19 2007
Ordered different terms of A120070 = 3, 8, 5, 15, 12, 7, ... (which contains two 15's, two 40's, and two 48's). Complement: A139544. (See A139491.) - Paul Curtz, Sep 01 2009
A024359(a(n)) > 0. - Reinhard Zumkeller, Nov 09 2012
If a(n) mod 6 = 3, n > 1, then a(n) = c^2 - f(a(n))^2 where f(n) = (floor(4*n/3) - 3 - n)/2. For example, 171 = 30^2 - 27^2 and f(171) = 27. - Gary Detlefs, Jul 15 2014

Crossrefs

Same as A042965 except for initial terms. - Michael Somos, Jun 08 2000
Different from A020884.

Programs

  • Haskell
    a024352 n = a024352_list !! (n-1)
    a024352_list = 3 : drop 4 a042965_list
    -- Reinhard Zumkeller, Nov 09 2012
    
  • Magma
    [3] cat [4 +Floor((4*n-3)/3): n in [2..100]]; // G. C. Greubel, Apr 22 2023
    
  • Mathematica
    Union[Flatten[Table[Select[Table[b^2 - c^2, {c, b-1}], # < 100 &], {b, 100}]]] (* Robert G. Wilson v, Jun 05 2004 *)
    LinearRecurrence[{1,0,1,-1},{3,5,7,8,9},70] (* Harvey P. Dale, Dec 20 2021 *)
  • PARI
    is(n)=(n%4!=2 && n>4) || n==3 \\ Charles R Greathouse IV, May 31 2013
    
  • Python
    def A024352(n): return 3 if n==1 else 3+(n<<2)//3 # Chai Wah Wu, Feb 10 2025
  • SageMath
    def A024352(n): return 4 + ((4*n-3)//3) - int(n==1)
    [A024352(n) for n in range(1,101)] # G. C. Greubel, Apr 22 2023
    

Formula

Consists of all positive integers except 1, 4 and numbers == 2 (mod 4).
a(n) = a(n-3) + 4, n > 4.
G.f.: (3 + 2*x + 2*x^2 - 2*x^3 - x^4)/(1 - x - x^3 + x^4). - Ralf Stephan, before May 13 2008
a(n) = a(n-1) + a(n-3) - a(n-4), for n > 5. - Ant King, Oct 03 2011
a(n) = 4 + floor((4*n-3)/3), n > 1. - Gary Detlefs, Jul 15 2014

Extensions

Edited by N. J. A. Sloane, Sep 19 2008