A024447
Sum of the products of the primes taken 2 at a time from the first n primes.
Original entry on oeis.org
0, 6, 31, 101, 288, 652, 1349, 2451, 4222, 7122, 11121, 17041, 25118, 35352, 48559, 65943, 88422, 115262, 148829, 189157, 235804, 292052, 357705, 435491, 528902, 635962, 755545, 890793, 1040232, 1207472, 1409783, 1635103, 1888690, 2165022, 2481945
Offset: 1
-
Primes:= [seq](ithprime(i),i=1..100):
(map(`^`,ListTools:-PartialSums(Primes),2) - ListTools:-PartialSums(map(`^`,Primes,2)))/2; # Robert Israel, Sep 24 2015
-
a[1] = 0; a[n_] := a[n] = a[n-1] + Prime[n]*Total[Prime[Range[n-1]]];
Array[a, 35] (* Jean-François Alcover, Feb 28 2019 *)
-
/* Extra memory allocation could be required. */
Primes=List();
forprime(x=2,prime(500000),listput(Primes,x));
/* Keep previous lines global, before a(n) */
a(n)={my(p=vector(n,j,Primes[j]),s=0);forvec(y=vector(2,i,[1,#p]),s+=(p[y[1]]*p[y[2]]),2);s} \\ R. J. Cano, Oct 11 2015
A238146
Triangle read by rows: T(n,k) is coefficient of x^(n-k) in consecutive prime rooted polynomial of degree n, P(x) = Product_{k=1..n} (x-p(k)) = 1*x^n + T(n,1)*x^(n-1)+ ... + T(n,k-1)*x + T(n,k), for 1 <= k <= n.
Original entry on oeis.org
-2, -5, 6, -10, 31, -30, -17, 101, -247, 210, -28, 288, -1358, 2927, -2310, -41, 652, -5102, 20581, -40361, 30030, -58, 1349, -16186, 107315, -390238, 716167, -510510, -77, 2451, -41817, 414849, -2429223, 8130689, -14117683, 9699690
Offset: 1
Triangle begins:
================================================
\k | 1 2 3 4 5 6 7
n\ |
================================================
1 | -2;
2 | -5, 6;
3 | -10, 31, -30;
4 | -17, 101, -247, 210;
5 | -28, 288, -1358, 2927, -2310;
6 | -41, 652, -5102, 20581, -40361, 30030;
7 | -58,1349,-16186,107315,-390238,716167,-510510;
So equation x^7 -58*x^6 + 1349*x^5 -16186*x^4 + 107315*x^3 -390238*x^2+ 716167*x -510510 = 0 has 7 consecutive prime roots: 2,3,5,7,11,13,17
A006939 is the determinant of triangle matrix, considering T(n,k) k>n = 0;
-
T:= n-> (p-> seq(coeff(p, x, n-i), i=1..n))(mul(x-ithprime(i), i=1..n)):
seq(T(n), n=1..10); # Alois P. Heinz, Aug 18 2019
-
a = 1
For [i = 1, i < 10, i++,
a *= (x - Prime[i]);
Print[Drop[Reverse[CoefficientList[Expand[a], x]], 1]]
]
A309802
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+2} (prime(i)*x-1).
Original entry on oeis.org
1, 10, 101, 1358, 20581, 390238, 8130689, 201123530, 6166988769, 201097530280, 7754625545261, 329758834067168, 14671637258193181, 711027519310719868, 38706187989054920001, 2338431642812927422310, 145908145906128304198449, 9976861293427674211625032
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309803,
A309804,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+2), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 18 2019
A309803
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+3} (prime(i)*x-1).
Original entry on oeis.org
-1, -17, -288, -5102, -107315, -2429223, -64002818, -2057205252, -69940351581, -2788890538777, -122099137635118, -5580021752377242, -276932659619923555, -15388458479166668283, -946625238259888348698, -60082571176666116692888, -4171440414742758122621945
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309802,
A309804,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+3), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 19 2019
A309804
a(n) is the coefficient of x^n in the polynomial Product_{i=1..n+4} (prime(i)*x-1).
Original entry on oeis.org
1, 28, 652, 16186, 414849, 11970750, 411154568, 14802996860, 617651235401, 28112591190218, 1330940558814492, 68134228016658366, 3888046744502816953, 244783216404832868510, 15878401438954693327808, 1123935467586630569656024, 83970858613393528568199649
Offset: 0
Cf.
A000040,
A002110,
A024451,
A070918,
A309802,
A309803,
A033999,
A007504,
A024447,
A024448,
A024449,
A054640,
A005867,
A238146,
A260613.
-
a:= n-> coeff(mul(ithprime(i)*x-1, i=1..n+4), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 19 2019
-
a[n_] := CoefficientList[Series[Product[Prime[i]*x - 1, {i, 1, n+4}], {x, 0, 25}], x] [[n+1]]; Array[a, 17, 0] (* Amiram Eldar, Aug 24 2019 *)
-
a(n) = polcoef(prod(i=1, n+4, prime(i)*x-1), n); \\ Michel Marcus, Aug 25 2019
A024453
a(n) = [ (3rd elementary symmetric function of P(n))/(first elementary symmetric function of P(n)) ], where P(n) = {first n+2 primes}.
Original entry on oeis.org
3, 14, 48, 124, 279, 543, 981, 1710, 2758, 4329, 6519, 9365, 13088, 18023, 24448, 32237, 42031, 53897, 67765, 84548, 104253, 127677, 155845, 188299, 224778, 266201, 312202, 363845, 426136, 495751, 574268, 660165, 758682, 865898, 984968, 1116797
Offset: 1
-
N:= 100: # to get the first N terms
P:= [seq(ithprime(i),i=1..N+2)]:
E1:= ListTools:-PartialSums(P):
E2:= ListTools:-PartialSums([0,seq(P[i]*E1[i-1],i=2..N+2)]):
E3:= ListTools:-PartialSums([0,seq(P[i]*E2[i-1],i=2..N+2)]):
seq(floor(E3[n]/E1[n]),n=3..N+2); # Robert Israel, May 01 2019
Showing 1-6 of 6 results.
Comments