A024451 a(n) is the numerator of Sum_{i = 1..n} 1/prime(i).
0, 1, 5, 31, 247, 2927, 40361, 716167, 14117683, 334406399, 9920878441, 314016924901, 11819186711467, 492007393304957, 21460568175640361, 1021729465586766997, 54766551458687142251, 3263815694539731437539, 201015517717077830328949, 13585328068403621603022853
Offset: 0
Examples
0/1, 1/2, 5/6, 31/30, 247/210, 2927/2310, 40361/30030, 716167/510510, 14117683/9699690, ...
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Sect. 2.2.
- D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Sect. VII.28.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350 (terms n = 1..100 from T. D. Noe)
- Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003.
- Index entries for sequences related to primorial numbers
Crossrefs
Denominators are A002110.
See also A106830/A034386, A241189/A241190, A241191/A241192, A061015/A061742, A115963/A115964, A250133/A296358, and A096795/A051451, A354417/A354418, A354859/A354860.
Subsequence of A048103 (after the initial 0).
Programs
-
Magma
[ Numerator(&+[ NthPrime(k)^-1: k in [1..n]]): n in [1..18] ]; // Bruno Berselli, Apr 11 2011
-
Maple
h:= n-> add(1/(ithprime(i)),i=1..n); t1:=[seq(h(n),n=0..50)]; t1a:=map(numer,t1); # A024451 t1b:=map(denom,t1); # A002110 - N. J. A. Sloane, Apr 25 2014
-
Mathematica
a[n_] := Numerator @ Sum[1/Prime[i], {i, n}]; Array[a,18] (* Jean-François Alcover, Apr 11 2011 *) f[k_] := Prime[k]; t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 16}] (* A024451 *) (* Clark Kimberling, Dec 29 2011 *) Numerator[Accumulate[1/Prime[Range[20]]]] (* Harvey P. Dale, Apr 11 2012 *)
-
PARI
a(n) = numerator(sum(i=1, n, 1/prime(i))); \\ Michel Marcus, Sep 18 2018
-
Python
from sympy import prime from fractions import Fraction def a(n): return sum(Fraction(1, prime(k)) for k in range(1, n+1)).numerator print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 12 2021
-
Python
from math import prod from sympy import prime def A024451(n): q = prod(plist:=tuple(prime(i) for i in range(1,n+1))) return sum(q//p for p in plist) # Chai Wah Wu, Nov 03 2022
Formula
Limit_{n->oo} (Sum_{p <= n} 1/p - log log n) = 0.2614972... = A077761.
a(n) = (Product_{i=1..n} prime(i))*(Sum_{i=1..n} 1/prime(i)). - Benoit Cloitre, Jan 30 2002
(n+1)-st elementary symmetric function of the first n primes.
From Antti Karttunen, Jan 31 2024, Feb 08 2024 and Nov 19 2024: (Start)
(End)
Extensions
a(0)=0 prepended by Alois P. Heinz, Jun 26 2015
Comments