A024490 a(n) = C(n-1,1) + C(n-3,3) + ... + C(n-2*m-1,2*m+1), where m = floor((n-2)/4).
1, 2, 3, 4, 6, 10, 17, 28, 45, 72, 116, 188, 305, 494, 799, 1292, 2090, 3382, 5473, 8856, 14329, 23184, 37512, 60696, 98209, 158906, 257115, 416020, 673134, 1089154, 1762289, 2851444, 4613733, 7465176, 12078908, 19544084, 31622993, 51167078, 82790071
Offset: 2
Links
- T. D. Noe, Table of n, a(n) for n = 2..502
- Shishuo Fu and Dazhao Tang, Partitions with fixed largest hook length, arXiv:1604.04028 [math.CO], 2016.
- Fumio Hazama, Spectra of graphs attached to the space of melodies, Discr. Math., 311 (2011), 2368-2383. See Table 2.1.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 886
- S. Klavzar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
- E. Munarini and N. Z. Salvi, Structural and enumerative properties of the Fibonacci cubes, Discrete Math., 255, 2002, 317-324.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1).
Programs
-
Magma
[n le 4 select n else 2*Self(n-1)-Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jan 09 2016
-
Mathematica
LinearRecurrence[{2,-1,0,1},{1,2,3,4},39] (* Ray Chandler, Sep 23 2015 *) CoefficientList[Series[1/((1-x-x^2)(1-x+x^2)), {x,0,40}], x] (* Vincenzo Librandi, Jan 09 2016 *)
-
PARI
Vec(x^2/((1-x-x^2)*(1-x+x^2)) + O(x^50)) \\ Michel Marcus, Feb 03 2016
-
SageMath
def A024490(n): return (fibonacci(n+1) -chebyshev_U(n,1/2))/2 [A024490(n) for n in range(2,60)] # G. C. Greubel, Apr 10 2023
Formula
a(n) = Sum_{k=0..n} Fibonacci(k+1)*2*sin(Pi*(n-k)/3 + Pi/3)/sqrt(3). - Paul Barry, May 18 2004
G.f.: x^2/((1-x-x^2)(1-x+x^2)). - Jon Perry, Jun 22 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+1,k+1)*(1+(-1)^k)/2. - Paul Barry, Jul 05 2007
G.f.: (1 + Q(0)*x^4/2)/(1-x)^2, where Q(k) = 1 + 1/(1 - x*( 4*k + 2 - x + x^3)/( x*(4*k + 4 - x + x^3) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jan 07 2014
E.g.f.: exp(x/2)*(15*cosh(sqrt(5)*x/2) - 5*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 3*sqrt(5)*sinh(sqrt(5)*x/2))/30. - Stefano Spezia, Aug 03 2022
Extensions
Additional comments from Henry Bottomley, Apr 07 2000
Corrected by Mario Catalani (mario.catalani(AT)unito.it), Jan 08 2003
Further corrections from Hugo van der Sanden, Oct 05 2006
Comments