cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000404 Numbers that are the sum of 2 nonzero squares.

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74, 80, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 162, 164, 169, 170, 173, 178
Offset: 1

Views

Author

Keywords

Comments

From the formula it is easy to see that if k is in this sequence, then so are all odd powers of k. - T. D. Noe, Jan 13 2009
Also numbers whose cubes are the sum of two nonzero squares. - Joe Namnath and Lawrence Sze
A line perpendicular to y=mx has its first integral y-intercept at a^2+b^2. The remaining ones for that slope are multiples of that primitive value. - Larry J Zimmermann, Aug 19 2010
The primes in this sequence are sequence A002313.
Complement of A018825; A025426(a(n)) > 0; A063725(a(n)) > 0. - Reinhard Zumkeller, Aug 16 2011
If the two squares are not equal, then any power is still in the sequence: if k = x^2 + y^2 with x != y, then k^2 = (x^2-y^2)^2 + (2xy)^2 and k^3 = (x(x^2-3y^2))^2 + (y(3x^2-y^2))^2, etc. - Carmine Suriano, Jul 13 2012
There are never more than 3 consecutive terms that differ by 1. Triples of consecutive terms that differ by 1 occur infinitely many times, for example, 2(k^2 + k)^2, (k^2 - 1)^2 + (k^2 + 2 k)^2, and (k^2 + k - 1)^2 + (k^2 + k + 1)^2 for any integer k > 1. - Ivan Neretin, Mar 16 2017 [Corrected by Jerzy R Borysowicz, Apr 14 2017]
Number of terms less than 10^k, k=1,2,3,...: 3, 34, 308, 2690, 23873, 215907, 1984228, ... - Muniru A Asiru, Feb 01 2018
The squares in this sequence are the squares of the so-called hypotenuse numbers A009003. - M. F. Hasler, Jun 20 2025

Examples

			25 = 3^2 + 4^2, therefore 25 is a term. Note that also 25^3 = 15625 = 44^2 + 117^2, therefore 15625 is a term.
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 103.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 75, Theorem 4, with Theorem 2, p. 15.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 251, 252.
  • Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.

Crossrefs

A001481 gives another version (allowing for zero squares).
Cf. A004431 (2 distinct squares), A063725 (number of representations), A024509 (numbers with multiplicity), A025284, A018825. Also A050803, A050801, A001105, A033431, A084888, A000578, A000290, A057961, A232499, A007692.
Cf. A003325 (analog for cubes), A003336 (analog for 4th powers).
Cf. A009003 (square roots of the squares in this sequence).
Column k=2 of A336725.

Programs

  • GAP
    P:=List([1..10^4],i->i^2);;
    A000404 := Set(Flat(List(P, i->List(P, j -> i+j)))); # Muniru A Asiru, Feb 01 2018
    
  • Haskell
    import Data.List (findIndices)
    a000404 n = a000404_list !! (n-1)
    a000404_list = findIndices (> 0) a025426_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Magma
    lst:=[]; for n in [1..178] do f:=Factorization(n); if IsSquare(n) then for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 1 then Append(~lst, n); break; end if; end for; else t:=0; for m in [1..#f] do d:=f[m]; if d[1] mod 4 eq 3 and d[2] mod 2 eq 1 then t:=1; break; end if; end for; if t eq 0 then Append(~lst, n); end if; end if; end for; lst; // Arkadiusz Wesolowski, Feb 16 2017
    
  • Maple
    nMax:=178: A:={}: for i to floor(sqrt(nMax)) do for j to floor(sqrt(nMax)) do if i^2+j^2 <= nMax then A := `union`(A, {i^2+j^2}) else  end if end do end do: A; # Emeric Deutsch, Jan 02 2017
  • Mathematica
    nMax=1000; n2=Floor[Sqrt[nMax-1]]; Union[Flatten[Table[a^2+b^2, {a,n2}, {b,a,Floor[Sqrt[nMax-a^2]]}]]]
    Select[Range@ 200, Length[PowersRepresentations[#, 2, 2] /. {0, } -> Nothing] > 0 &] (* _Michael De Vlieger, Mar 24 2016 *)
    Module[{upto=200},Select[Union[Total/@Tuples[Range[Sqrt[upto]]^2,2]],#<= upto&]] (* Harvey P. Dale, Sep 18 2021 *)
  • PARI
    is_A000404(n)= for( i=1,#n=factor(n)~%4, n[1,i]==3 && n[2,i]%2 && return); n && ( vecmin(n[1,])==1 || (n[1,1]==2 && n[2,1]%2)) \\ M. F. Hasler, Feb 07 2009
    
  • PARI
    list(lim)=my(v=List(),x2); lim\=1; for(x=1,sqrtint(lim-1), x2=x^2; for(y=1,sqrtint(lim-x2), listput(v,x2+y^2))); Set(v) \\ Charles R Greathouse IV, Apr 30 2016
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A000404_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            c = False
            for p in (f:=factorint(n)):
                if (q:= p & 3)==3 and f[p]&1:
                    break
                elif q == 1:
                    c = True
            else:
                if c or f.get(2,0)&1:
                    yield n
    A000404_list = list(islice(A000404_gen(),30)) # Chai Wah Wu, Jul 01 2022

Formula

Let k = 2^t * p_1^a_1 * p_2^a_2 * ... * p_r^a_r * q_1^b_1 * q_2^b_2 * ... * q_s^b_s with t >= 0, a_i >= 0 for i=1..r, where p_i == 1 (mod 4) for i=1..r and q_j == -1 (mod 4) for j=1..s. Then k is a term iff 1) b_j == 0 (mod 2) for j=1..s and 2) r > 0 or t == 1 (mod 2) (or both).
From Charles R Greathouse IV, Nov 18 2022: (Start)
a(n) ~ k*n*sqrt(log n), where k = 1.3085... = 1/A064533.
There are B(x) = (x/sqrt(log x)) * (K + B2/log x + O(1/log^2 x)) terms of this sequence up to x, where K = A064533 and B2 = A227158. (End)

Extensions

Edited by Ralf Stephan, Nov 15 2004
Typo in formula corrected by M. F. Hasler, Feb 07 2009
Erroneous Mathematica program fixed by T. D. Noe, Aug 07 2009
PARI code fixed for versions > 2.5 by M. F. Hasler, Jan 01 2013

A224770 Numbers that are the primitive sum of two squares in exactly two ways.

Original entry on oeis.org

65, 85, 130, 145, 170, 185, 205, 221, 265, 290, 305, 325, 365, 370, 377, 410, 425, 442, 445, 481, 485, 493, 505, 530, 533, 545, 565, 610, 629, 650, 685, 689, 697, 725, 730, 745, 754, 785, 793, 845, 850, 865, 890, 901, 905, 925, 949, 962, 965, 970
Offset: 1

Views

Author

Wolfdieter Lang, Apr 18 2013

Keywords

Comments

These are the increasingly ordered numbers a(n) which satisfy A193138(a(n)) = 2.
Neither the order of the squares nor the signs of the numbers to be squared are taken into account. The two squares are necessarily distinct and each is nonzero.
This sequence is a proper subsequence of A000404.

Examples

			n=1,   65:  (1, 8),  (4, 7),
n=2,   85:  (2, 9),  (6, 7),
n=3,  130:  (3, 11), (7, 9),
n=4,  145:  (1, 12), (8, 9),
n=5,  170:  (1, 13), (7, 11),
n=6,  185:  (4, 13), (8, 11),
n=7,  205:  (3, 14), (6, 13),
n=8,  221:  (5, 14), (10, 11),
n=9,  265:  (3, 16), (11, 12),
n=10, 290:  (1, 17), (11, 13).
		

Crossrefs

Cf. A224450 (one way), A193138 (multiplicities), A000404, A024509.

Programs

  • Mathematica
    nn = 35; t = Sort[Select[Flatten[Table[If[GCD[a, b] == 1, a^2 + b^2, 0], {a, nn}, {b, a, nn}]], 0 < # <= nn^2 &]]; Transpose[Select[Tally[t], #[[2]] == 2 &]][[1]] (* T. D. Noe, Apr 20 2013 *)

Formula

a(n) = a^2 + b^2, a and integers, 0 < a < b and gcd(a,b) = 1 in exactly two ways. These representations of a(n) are denoted by two different pairs (a,b).

A308982 Areas of integer rectangles circumscribed by increasingly large circles.

Original entry on oeis.org

1, 2, 4, 3, 6, 4, 9, 8, 12, 5, 10, 16, 15, 6, 12, 20, 18, 7, 25, 24, 14, 21, 30, 8, 28, 16, 36, 24, 35, 32, 9, 18, 42, 40, 27, 36, 49, 48, 10, 20, 45, 30, 56, 40, 54, 11, 22, 50, 64, 33, 63, 60, 44, 12, 72, 55, 24, 70, 36, 66, 48, 81, 80, 60, 13, 77, 26, 39
Offset: 1

Views

Author

Dave Rutt, Jul 04 2019

Keywords

Comments

Sort all rectangles with integer side lengths by the radius of the circle that circumscribes them. Ties are broken by sorting by area. The terms of the sequence are the areas of the rectangles.

Examples

			a(1) is a 1 X 1 rectangle; r = sqrt(1^2 + 1^2) = sqrt(2); A = 1.
a(2) is a 2 X 1 rectangle; r = sqrt(2^2 + 1^2) = sqrt(5); A = 2.
		

Crossrefs

Cf. A024509.

Programs

  • Mathematica
    Times @@@ Take[Flatten[ SortBy[#, Times @@ # &] & /@ GatherBy[ SortBy[ Union[Sort /@ Tuples[ Range[70], 2]], Total[#^2] &], Total[#^2] &], 1], 70] (* Giovanni Resta, Jul 18 2019 *)

Extensions

More terms from Giovanni Resta, Jul 17 2019
Showing 1-3 of 3 results.