cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024718 a(n) = (1/2)*(1 + Sum_{k=0..n} binomial(2*k, k)).

Original entry on oeis.org

1, 2, 5, 15, 50, 176, 638, 2354, 8789, 33099, 125477, 478193, 1830271, 7030571, 27088871, 104647631, 405187826, 1571990936, 6109558586, 23782190486, 92705454896, 361834392116, 1413883873976, 5530599237776, 21654401079326, 84859704298202, 332818970772254
Offset: 0

Views

Author

Keywords

Comments

Total number of leaves in all rooted ordered trees with at most n edges. - Michael Somos, Feb 14 2006
Also: Number of UH-free Schroeder paths of semilength n with horizontal steps only at level less than two [see Yan]. - R. J. Mathar, May 24 2008
Hankel transform is A010892. - Paul Barry, Apr 28 2009
Binomial transform of A005773. - Philippe Deléham, Dec 13 2009
Number of vertices all of whose children are leaves in all ordered trees with n+1 edges. Example: a(3) = 15; for an explanation see David Callan's comment in A001519. - Emeric Deutsch, Feb 12 2015

Examples

			G.f. = 1 + 2*x + 5*x^2 + 15*x^3 + 50*x^4 + 176*x^5 + 638*x^6 + ...
		

Crossrefs

Partial sums of A088218.
Bisection of A086905.
Second column of triangle A102541.

Programs

  • Maple
    A024718 := n -> (binomial(2*n, n)*hypergeom([1, -n], [1/2 - n], 1/4) + 1)/2:
    seq(simplify(A024718(n)), n = 0..26); # Peter Luschny, Dec 15 2024
  • Mathematica
    Table[Sum[Binomial[2k-1,k-1],{k,0,n}],{n,0,100}] (* Emanuele Munarini, May 18 2018 *)
  • PARI
    a(n) = (1 + sum(k=0, n, binomial(2*k, k)))/2; \\ Michel Marcus, May 18 2018

Formula

a(n) = A079309(n) + 1.
G.f.: 1/((1 - x)*(2 - C)), where C = g.f. for the Catalan numbers A000108. - N. J. A. Sloane, Aug 30 2002
Given g.f. A(x), then x * A(x - x^2) is the g.f. of A024494. - Michael Somos, Feb 14 2006
G.f.: (1 + 1 / sqrt(1 - 4*x)) / (2 - 2*x). - Michael Somos, Feb 14 2006
D-finite with recurrence: n*a(n) - (5*n-2)*a(n-1) + 2*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Dec 02 2012
Remark: The above recurrence is true (it can be easily proved by differentiating the generating function). Notice that it is the same recurrence satisfied by the partial sums of the central binomial coefficients (A006134). - Emanuele Munarini, May 18 2018
0 = a(n)*(16*a(n+1) - 22*a(n+2) + 6*a(n+3)) + a(n+1)*(-18*a(n+1) + 27*a(n+2) - 7*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z if a(n) = 1/2 for n < 0. - Michael Somos, Apr 23 2014
a(n) = ((1 - I/sqrt(3))/2 - binomial(2*n+1, n)*hypergeom([n+3/2, 1], [n+2], 4)). - Peter Luschny, May 18 2018
a(n) = [x^n] 1/((1-x+x^2) * (1-x)^n). - Seiichi Manyama, Apr 06 2024

Extensions

Name edited by Petros Hadjicostas, Aug 04 2020