A073525
Result of applying the transformation on generating functions A -> 1/((1-x)*(1-x*A)) to the g.f. for A024718.
Original entry on oeis.org
1, 2, 5, 15, 51, 187, 716, 2811, 11204, 45089, 182636, 743180, 3034361, 12420945, 50946169, 209296302, 860941813, 3545265139, 14611979639, 60268977054, 248744871983, 1027188978686, 4243751316106, 17539851091965, 72519657462805, 299930389183429, 1240806275485094
Offset: 0
A384000
Smallest number k with n distinct prime factors such that A010846(k) = A024718(n) (a tight lower bound), or -1 if such k does not exist.
Original entry on oeis.org
1, 2, 6, 1001, 268801, 3433936673, 2603508937756211
Offset: 0
Table of a(n), n = 0..6, showing prime decomposition and cardinality of row a(n) of A162306, c(n) = A010846(a(n)) = A024718(n).
n a(n) c(n) prime factors of a(n) a(n)
----------------------------------------------------------------------
0 1 1 -
1 2 2 2 A000040(1)
2 6 5 2, 3 A138109(1)
3 1001 15 7, 11, 13 A383177(1)
4 268801 50 13, 23, 29, 31 A383178(2)
5 3433936673 176 41, 83, 97, 101, 103 A383179(209)
6 2603508937756211 638 163, 373, 439, 457, 461, 463
Tables of terms m in r(a(n)) = row a(n) of A162306, writing instead only exponents i of prime power factors p^i | m for each p | a(n), written in order of the prime base:
For n = 2, i.e., squarefree semiprime k in A138109 (that achieves the lower bound), we have the following ordered exponent combinations in a rank-2 table:
00 10 20
01 11
Thus row 6 of A162306 has the following elements:
1 2 4
3 6
For n = 3, i.e., sphenic k in A383177 (that achieves the lower bound), we have the following ordered exponent combinations in a rank-3 table:
000 100 200 300 001 101 201 002
010 110 210 011 111
020 120
Thus row 1001 of A162306 has the following elements:
1 7 49 343 13 91 637 169
11 77 539 141 1001
121 857
Cf.
A001700,
A001221,
A005117,
A007947,
A010846,
A024718,
A138109,
A162306,
A383177,
A383178,
A383179.
A384002
Let S(n,j,k), j = 1..n, k = 1..A024718(n), where row 1 = {(0),(1)}, and row n = union of n-tuples whose sum m < n, and the n-tuples formed by appending m to the (n-1)-tuples in row n-1. Then T(n,j) = j-th tuple in row n of S read as a base n+1 number expressed in decimal.
Original entry on oeis.org
0, 1, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 5, 6, 8, 9, 16, 17, 18, 20, 21, 32, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 25, 26, 27, 28, 30, 31, 32, 35, 36, 50, 51, 52, 55, 56, 75, 125, 126, 127, 128, 130, 131, 132, 135, 136, 150, 151, 152, 155, 156, 175, 250, 251, 252, 255, 275, 375
Offset: 1
Table begins:
1: 0, 1;
2: 0, 1, 2, 3, 4;
3: 0, 1, 2, 3, 4, 5, 6, 8, 9, 16, 17, 18, 20, 21, 32;
4: 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 25, 26, 27, 28, 30, 31, 32,
35, 36, 50, 51, 52, 55, 56, 75, 125, 126, 127, 128, 130, 131, 132, 135,
136, 150, 151, 152, 155, 156, 175, 250, 251, 252, 255, 275, 375;
etc.
Row 2 of S is {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)}. Reading the tuples in row 2 as a base 3 number, we have row 2 of this sequence.
-
nn = 8; w[0] = {{0}};
Do[If[n == 1, Set[w[1], {{0}, {1}}],
Set[w[n], Union@ Join[Select[Tuples[Range[0, n - 1], n], Total[#] < n &],
Map[Append[#, n - Total[#]] &, w[n - 1] ] ] ] ], {n, nn}];
Table[Map[FromDigits[#, n + 1] &, w[n]], {n, 0, nn}]
A384001
Irregular triangle T(n,j,k), j = 1..A024718(n), k = 1..n, where row 1 = {(0), (1)}, and row n = union of n-tuples whose sum s < n, and the n-tuples formed by appending s to the (n-1)-tuples in row n-1.
Original entry on oeis.org
0, 1, 0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 2, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2
Offset: 1
Table begins:
1: (0), (1);
2: (0, 0), (0, 1), (0, 2), (1, 0), (1, 1);
3: (0,0,0), (0,0,1), (0,0,2), (0,0,3), (0,1,0),
(0,1,1), (0,1,2), (0,2,0), (0,2,1), (1,0,0),
(1,0,1), (1,0,2), (1,1,0), (1,1,1), (2,0,0)
etc.
Row 2 arranged as a rank 2 table, concatenating T(2,j,k), k = 1..2:
00 10 20
01 11
.
Row 3 arranged as a rank 3 table, concatenating T(3,j,k), k = 1..3:
000 001 002 003 100 101 102 200
010 011 012 110 111
020 021
-
nn = 4; w[0] = {{0}};
Do[If[n == 1, Set[w[1], {{0}, {1}}],
Set[w[n], Union@ Join[Select[Tuples[Range[0, n - 1], n], Total[#] < n &],
Map[Append[#, n - Total[#]] &, w[n - 1] ] ] ] ], {n, nn}];
Flatten@ Array[w, nn]
A088218
Total number of leaves in all rooted ordered trees with n edges.
Original entry on oeis.org
1, 1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352716, 1352078, 5200300, 20058300, 77558760, 300540195, 1166803110, 4537567650, 17672631900, 68923264410, 269128937220, 1052049481860, 4116715363800, 16123801841550, 63205303218876, 247959266474052
Offset: 0
G.f. = 1 + x + 3*x^2 + 10*x^3 + 35*x^4 + 126*x^5 + 462*x^6 + 1716*x^7 + ...
The five rooted ordered trees with 3 edges have 10 leaves.
..x........................
..o..x.x..x......x.........
..o...o...o.x..x.o..x.x.x..
..r...r....r....r.....r....
- L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- B. Dasarathy and C. Yang, A transformation on ordered trees, Comput. J. 23 (1980) 161-164. - _Nachum Dershowitz_, Sep 01 2016
- Toufik Mansour and Mark Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) Vol. 124, No. 2, May 2014, pp. 127-140.
- Anthony Mansuy, Preordered forests, packed words and contraction algebras, J. Algebra 411 (2014) 259-311.
- Mircea Merca, A Note on Cosine Power Sums, J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
- A. Vogt, Resummation of small-x double logarithms in QCD: semi-inclusive electron-positron annihilation, arXiv preprint arXiv:1108.2993 [hep-ph], 2011.
Same as
A001700 modulo initial term and offset.
A000041 counts partitions of 2n with alternating sum 0, ranked by
A000290.
A003242 counts anti-run compositions.
A103919 counts partitions by sum and alternating sum (reverse:
A344612).
A106356 counts compositions by number of maximal anti-runs.
A124754 gives the alternating sum of standard compositions.
A345197 counts compositions by sum, length, and alternating sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
Cf.
A000027,
A000070,
A000097,
A000108,
A001622,
A006232,
A008965,
A039599,
A045992,
A058696,
A094527,
A097070,
A110162,
A110555,
A180662,
A238279,
A239830,
A325534,
A325535,
A333213,
A344607,
A344611,
A344617.
-
[Binomial(2*n-1, n): n in [0..30]]; // Vincenzo Librandi, Aug 07 2014
-
seq(binomial(2*n-1, n),n=0..24); # Peter Luschny, Sep 22 2014
-
a[ n_] := SeriesCoefficient[(1 - x)^-n, {x, 0, n}];
c = (1 - (1 - 4 x)^(1/2))/(2 x);CoefficientList[Series[1/(1-(c-1)),{x,0,20}],x] (* Geoffrey Critzer, Dec 02 2010 *)
Table[Binomial[2 n - 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ (1 + BesselI[0, 2 x]) / 2, {x, 0, m}]]]; (* Michael Somos, Nov 22 2014 *)
-
{a(n) = sum( i=0, n, binomial(n+i-2,i))};
-
{a(n) = if( n<0, 0, polcoeff( (1 + 1 / sqrt(1 - 4*x + x * O(x^n))) / 2, n))};
-
{a(n) = if( n<0, 0, polcoeff( 1 / (1 - x + x * O(x^n))^n, n))};
-
{a(n) = if( n<0, 0, binomial( 2*n - 1, n))};
-
{a(n) = if( n<1, n==0, polcoeff( subst((1 - x) / (1 - 2*x), x, serreverse( x - x^2 + x * O(x^n))), n))};
-
def A088218(n):
return rising_factorial(n,n)/falling_factorial(n,n)
[A088218(n) for n in (0..24)] # Peter Luschny, Nov 21 2012
A005773
Number of directed animals of size n (or directed n-ominoes in standard position).
Original entry on oeis.org
1, 1, 2, 5, 13, 35, 96, 267, 750, 2123, 6046, 17303, 49721, 143365, 414584, 1201917, 3492117, 10165779, 29643870, 86574831, 253188111, 741365049, 2173243128, 6377181825, 18730782252, 55062586341, 161995031226, 476941691177, 1405155255055, 4142457992363
Offset: 0
G.f. = 1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 96*x^6 + 267*x^7 + ...
a(3) = 5, a(4) = 13; since the top row of M^3 = (5, 5, 2, 1, ...)
From _Eric Rowland_, Sep 25 2021: (Start)
There are a(4) = 13 directed animals of size 4:
O
O O O OO O O
O O OO O OO O OO OOO O O OO O
O OO O O OO OOO O O OO OOO OO OOO OOOO
(End)
From _Joerg Arndt_, Nov 10 2012: (Start)
There are a(4)=13 smooth factorial numbers of length 4 (dots for zeros):
[ 1] [ . . . . ]
[ 2] [ . . . 1 ]
[ 3] [ . . 1 . ]
[ 4] [ . . 1 1 ]
[ 5] [ . . 1 2 ]
[ 6] [ . 1 . . ]
[ 7] [ . 1 . 1 ]
[ 8] [ . 1 1 . ]
[ 9] [ . 1 1 1 ]
[10] [ . 1 1 2 ]
[11] [ . 1 2 1 ]
[12] [ . 1 2 2 ]
[13] [ . 1 2 3 ]
(End)
From _Joerg Arndt_, Nov 22 2012: (Start)
There are a(4)=13 base 3 4-digit numbers (not starting with 0) with digit sum 4:
[ 1] [ 2 2 . . ]
[ 2] [ 2 1 1 . ]
[ 3] [ 1 2 1 . ]
[ 4] [ 2 . 2 . ]
[ 5] [ 1 1 2 . ]
[ 6] [ 2 1 . 1 ]
[ 7] [ 1 2 . 1 ]
[ 8] [ 2 . 1 1 ]
[ 9] [ 1 1 1 1 ]
[10] [ 1 . 2 1 ]
[11] [ 2 . . 2 ]
[12] [ 1 1 . 2 ]
[13] [ 1 . 1 2 ]
(End)
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 237.
- T. Mansour, Combinatorics of Set Partitions, Discrete Mathematics and Its Applications, CRC Press, 2013, p. 377.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.46a.
- R. P. Stanley, Catalan Numbers, Cambridge, 2015, p. 132.
- T. D. Noe, Table of n, a(n) for n = 0..200
- Kassie Archer and Christina Graves, A new statistic on Dyck paths for counting 3-dimensional Catalan words, arXiv:2205.09686 [math.CO], 2022.
- Andrei Asinowski and Günter Rote, Point sets with many non-crossing matchings, arXiv preprint arXiv:1502.04925 [cs.CG], 2015.
- Andrei Asinowski, Axel Bacher, Cyril Banderier and Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Andrei Asinowski, Cyril Banderier and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Axel Bacher, Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths, arXiv:1802.06030 [cs.DS], 2018.
- Cyril Banderier and Paweł Hitczenko, Enumeration and asymptotics of restricted compositions having the same number of parts, Disc. Appl. Math. 160 (18) (2012) 2542-2554.
- Cyril Banderier, Christian Krattenthaler, Alan Krinik, Dmitry Kruchinin, Vladimir Kruchinin, David Tuan Nguyen, and Michael Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv:1609.06473 [math.CO], 2016.
- Elena Barcucci, Alberto Del Lungo, Elisa Pergola, and Renzo Pinzani, From Motzkin to Catalan Permutations, Discr. Math., 217 (2000), 33-49.
- Elena Barcucci, Antonio Bernini and Renzo Pinzani, Exhaustive generation of positive lattice paths, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018) Vol. 2113.
- Jean-Luc Baril, David Bevan and Sergey Kirgizov, Bijections between directed animals, multisets and Grand-Dyck paths, arXiv:1906.11870 [math.CO], 2019.
- Jean-Luc Baril, Rigoberto Flórez, and José L. Ramírez, Counting symmetric and asymmetric peaks in motzkin paths with air pockets, Univ. Bourgogne (France, 2023).
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Forests and pattern-avoiding permutations modulo pure descents, Permutation Patterns 2017, Reykjavik University, Iceland, June 26-30, 2017.
- Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Ange Bigeni and Evgeny Feigin, Poincaré polynomials of the degenerate flag varieties of type C, arXiv:1804.10804 [math.CO], 2018.
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Seminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan and Manuel Kauers, Automatic Classification of Restricted Lattice Walks, arXiv:0811.2899 [math.CO], 2009.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
- H. Bottomley, Illustration of initial terms
- Mireille Bousquet-Mélou, New enumerative results on two-dimensional directed animals
- Mireille Bousquet-Mélou, New enumerative results on two-dimensional directed animals, Discr. Math., 180 (1998), 73-106.
- Xiang-Ke Chang, Xing-Biao Hu, Hongchuan Lei and Yeong-Nan Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- Gi-Sang Cheon, Hana Kim and Louis W. Shapiro, Combinatorics of Riordan arrays with identical A and Z sequences, Discrete Math., 312 (2012), 2040-2049.
- Hyunsoo Cho, JiSun Huh and Jaebum Sohn, Counting self-conjugate (s,s+1,s+2)-core partitions, arXiv:1904.02313 [math.CO], 2019.
- Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq., Vol. 22 (2019), Article 19.8.3.
- Rodrigo De Castro, Andrés L. Ramírez, and José L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv:1310.2449 [cs.DM], 2013.
- Dennis E. Davenport, Louis W. Shapiro and Leon C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
- Patrick Dehornoy and Emilie Tesson, Garside combinatorics for Thompson's monoid F+ and a hybrid with the braid monoid B_oo+, arXiv:1803.02639 [math.GR], 2018.
- Isaac DeJager, Madeleine Naquin and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
- D. Dhar et al., Enumeration of directed site animals on two-dimensional lattices, J. Phys. A 15 (1982), L279-L284.
- Igor Dolinka, James East, Athanasios Evangelou, Desmond FitzGerald, Nicholas Ham, James Hyde, Nicholas Loughlin, and James Mitchell, Idempotent Statistics of the Motzkin and Jones Monoids, arXiv:1507.04838 [math.CO], 2015.
- Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From _N. J. A. Sloane_, May 01 2012
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 81.
- Juan B. Gil and Luiz E. Lopez, Enumeration of symmetric arc diagrams, arXiv:2203.10589 [math.CO], 2022.
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- D. Gouyou-Beauchamps and G. Viennot, Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. in Appl. Math. 9 (1988), no. 3, 334-357.
- Taras Goy and Mark Shattuck, Determinants of Some Hessenberg-Toeplitz Matrices with Motzkin Number Entries, J. Int. Seq., Vol. 26 (2023), Article 23.3.4.
- Petr Gregor, Torsten Mütze, and Namrata, Combinatorial generation via permutation languages. VI. Binary trees, arXiv:2306.08420 [cs.DM], 2023.
- Petr Gregor, Torsten Mütze, and Namrata, Pattern-Avoiding Binary Trees-Generation, Counting, and Bijections, Leibniz Int'l Proc. Informatics (LIPIcs), 34th Int'l Symp. Algor. Comp. (ISAAC 2023). See p. 33.13.
- Tom Halverson and Mike Reeks, Gelfand Models for Diagram Algebras, arXiv preprint arXiv:1302.6150 [math.RT], 2013.
- Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
- Nickolas Hein and Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015-2016. See Table 1.1 p. 2.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011
- Vít Jelínek, Toufik Mansour, and Mark Shattuck, On multiple pattern avoiding set partitions, Adv. Appl. Math. 50 (2) (2013) 292-326, Theorem 4.2.
- Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Adv. Appl. Math. 101 (2018), 232-265.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Toufik Mansour, Restricted 1-3-2 permutations and generalized patterns, arXiv:math/0110039 [math.CO], 2001.
- Toufik Mansour, Restricted 1-3-2 permutations and generalized patterns, Annals of Combin., 6 (2002), 65-76.
- Toufik Mansour and Mark Shattuck, Restricted partitions and generalized Catalan numbers, PU. M. A., Vol. (2011), No. 2, pp. 239-251. - From _N. J. A. Sloane_, Oct 13 2012
- Toufik Mansour and Mark Shattuck, Avoidance of vincular patterns by Catalan words, arXiv:2405.12435 [math.CO], 2024. See p. 4.
- Toufik Mansour and Mark Shattuck, Enumeration of Catalan and smooth words according to capacity, Integers (2025) Vol. 25, Art. No. A5. See p. 3.
- Toufik Mansour, Mark Shattuck and David G. L. Wang, Counting subwords in flattened permutations, arXiv:1307.3637 [math.CO], 2013.
- Toufik Mansour, Mark Shattuck, and Stephen Wagner, Counting subwords in flattened permutations, Discrete Math., 338 (2015), pp. 1989-2005.
- Jan Němeček and Martin Klazar, A bijection between nonnegative words and sparse abba-free partitions, Discr. Math., 265 (2003), 411-416.
- Dmitri I. Panyushev, Ideals of Heisenberg type and minimax elements of affine Weyl groups, arXiv:math/0311347 [math.RT], Lie Groups and Invariant Theory, Amer. Math. Soc. Translations, Series 2, Volume 213, (2005), ed. E. Vinberg.
- Paul Peart and Wen-Jin Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
- Helmut Prodinger, Cornerless, peakless, valleyless Motzkin paths (regular and skew) and applications to bargraphs, arXiv:2501.13645 [math.CO], 2025. See p. 8.
- Lara Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. - From _N. J. A. Sloane_, Jan 03 2013
- Minghai Qin, Eitan Yaakobi, and Paul H. Siegel, Constrained Codes that Mitigate Inter-Cell Interference in Read/Write Cycles for Flash Memories, IEEE Jnl. Selected Areas in Communications, 2014. See Eq. (1). - _N. J. A. Sloane_, Jul 16 2014
- Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, arXiv:1310.8635 [math.NT], 2013.
- A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
- Mark Shattuck, Pattern Avoiding Set Partitions and Sequence A005773, Talk given at AMS Regional Meeting, Rutgers University, Nov 15 2015; Abstract 1115-05-211.
- Mark Shattuck, Subword Patterns in Smooth Words, Enum. Comb. Appl. (2024) Vol. 4, No. 4, Art. No. S2R32. See p. 2.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 97.
- Pascal O. Vontobel, Counting balanced sequences w/o forbidden patterns via the Bethe approximation and loop calculus, Information Theory (ISIT), 2014 IEEE International Symposium on, June 29 2014-July 4 2014 Page(s): 1608-1612.
- Sherry H. F. Yan, Yao Yu and Hao Zhou, On self-conjugate (s, s+1, .., s+k)-core partitions, arXiv:1905.00570 [math.CO], 2019.
- Daniel Yaqubi, Mohammad Farrokhi Derakhshandeh Ghouchan, and Hamed Ghasemian Zoeram, Lattice paths inside a table. I, arXiv:1612.08697 [math.CO], 2016-2017.
The right edge of the triangle
A062105.
Except for the first term a(0), sequence is the binomial transform of
A001405.
-
a005773 n = a005773_list !! n
a005773_list = 1 : f a001006_list [] where
f (x:xs) ys = y : f xs (y : ys) where
y = x + sum (zipWith (*) a001006_list ys)
-- Reinhard Zumkeller, Mar 30 2012
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2*x/(3*x-1+Sqrt(1-2*x-3*x^2)) )); // G. C. Greubel, Apr 05 2019
-
seq( sum(binomial(i-1, k)*binomial(i-k, k), k=0..floor(i/2)), i=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 09 2001
A005773:=proc(n::integer)
local i, j, A, istart, iend, KartProd, Liste, Term, delta;
A:=0;
for i from 0 to n do
Liste[i]:=NULL;
istart[i]:=0;
iend[i]:=n-i+1:
for j from istart[i] to iend[i] do
Liste[i]:=Liste[i], j;
end do;
Liste[i]:=[Liste[i]]:
end do;
KartProd:=cartprod([seq(Liste[i], i=1..n)]);
while not KartProd[finished] do
Term:=KartProd[nextvalue]();
delta:=1;
for i from 1 to n-1 do
if (op(i, Term) - op(i+1, Term))^2 >= 2 then
delta:=0;
break;
end if;
end do;
A:=A+delta;
end do;
end proc; # Thomas Wieder, Feb 22 2009:
# n -> [a(0),a(1),..,a(n)]
A005773_list := proc(n) local W, m, j, i;
W := proc(i, j, n) option remember;
if min(i, j, n) < 0 or max(i, j) > n then 0
elif n = 0 then if i = 0 and j = 0 then 1 else 0 fi
else W(i-1,j,n-1)+W(i,j-1,n-1)+W(i+1,j-1,n-1) fi end:
[1,seq(add(add(W(i,j,m),i=0..m),j=0..m),m=0..n-1)] end:
A005773_list(27); # Peter Luschny, May 21 2011
A005773 := proc(n)
option remember;
if n <= 1 then
1 ;
else
2*n*procname(n-1)+3*(n-2)*procname(n-2) ;
%/n ;
end if;
end proc:
seq(A005773(n),n=0..10) ; # R. J. Mathar, Jul 25 2017
-
CoefficientList[Series[(2x)/(3x-1+Sqrt[1-2x-3x^2]), {x,0,40}], x] (* Harvey P. Dale, Apr 03 2011 *)
a[0]=1; a[n_] := Sum[k/n*Sum[Binomial[n, j]*Binomial[j, 2*j-n-k], {j, 0, n}], {k, 1, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)
A005773[n_] := 2 (-1)^(n+1) JacobiP[n - 1, 3, -n -1/2, -7] / (n^2 + n); A005773[0] := 1; Table[A005773[n], {n, 0, 27}] (* Peter Luschny, May 25 2021 *)
-
a(n)=if(n<2,n>=0,(2*n*a(n-1)+3*(n-2)*a(n-2))/n)
-
for(n=0, 27, print1(if(n==0, 1, sum(k=0, n-1, (-1)^(n - 1 + k)*binomial(n - 1, k)*binomial(2*k + 1, k + 1))),", ")) \\ Indranil Ghosh, Mar 14 2017
-
Vec(1/(1-serreverse(x*(1-x)/(1-x^3) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
-
def da():
a, b, c, d, n = 0, 1, 1, -1, 1
yield 1
yield 1
while True:
yield b + (-1)^n*d
n += 1
a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
A005773 = da()
print([next(A005773) for in range(28)]) # _Peter Luschny, May 16 2016
-
(2*x/(3*x-1+sqrt(1-2*x-3*x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 05 2019
A006134
a(n) = Sum_{k=0..n} binomial(2*k,k).
Original entry on oeis.org
1, 3, 9, 29, 99, 351, 1275, 4707, 17577, 66197, 250953, 956385, 3660541, 14061141, 54177741, 209295261, 810375651, 3143981871, 12219117171, 47564380971, 185410909791, 723668784231, 2827767747951, 11061198475551, 43308802158651, 169719408596403, 665637941544507
Offset: 0
1 + 3*x + 9*x^2 + 29*x^3 + 99*x^4 + 351*x^5 + 1275*x^6 + 4707*x^7 + 17577*x^8 + ...
- Marko Petkovsek, Herbert Wilf and Doron Zeilberger, A=B, A K Peters, 1996, p. 22.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Moa Apagodu and Doron Zeilberger, Using the "Freshman's Dream" to Prove Combinatorial Congruences, arXiv:1606.03351 [math.CO], 2016. Also Amer. Math. Monthly. 124 (2017), 597-608.
- Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19 (2016), Article 16.3.5.
- Hacène Belbachir, Abdelghani Mehdaoui and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- J. Hietarinta, T. Mase and R. Willox, Algebraic entropy computations for lattice equations: why initial value problems do matter, arXiv:1909.03232 [nlin.SI], 2019.
- Neelam J. Kumar, N-Summet-k and Its Application in the Construction of Pascal Triangle and Pascal Matrix, Journal of Applied Mathematics and Physics, 4 (2016), 169-177.
- W. F. Lunnon, The Pascal matrix, Fib. Quart., Vol. 15 (1977), pp. 201-204.
- Kim McInturff and Rob Pratt, Representations of a generating function, The College Mathematics Journal, 40 (2009), 294-296.
- Hao Pan and Zhi-Wei Sun, A combinatorial identity with application to Catalan numbers, arXiv:math/0509648 [math.CO], 2005-2006.
- Peter Paule, A proof of a conjecture of Knuth. Experiment. Math. 5, No. 2 (1996), 83-89. MR1418955 (97k:33004).
- Mehtaab Sawhney, proposer, Problem 1102 Problems and Solutions, The College Mathematics Journal, Vol. 48, No. 3 (May 2017), pp. 219-225, p. 219; Radouan Boukharfane, A binomial identity, Solution to Problem 1102, ibid., Vol. 49, No. 3 (May 2018), pp. 225-226.
- Wikipedia, Pascal Matrix.
Row sums of
A361654 (also column k = 2).
-
n=10; x=pascal(n); trace(x)
-
&cat[ [&+[ Binomial(2*k, k): k in [0..n]]]: n in [0..30]]; // Vincenzo Librandi, Aug 13 2015
-
A006134 := proc(n) sum(binomial(2*k,k),k=0..n); end;
a := n -> -binomial(2*(n+1),n+1)*hypergeom([1,n+3/2],[n+2], 4) - I/sqrt(3):
seq(simplify(a(n)), n=0..24); # Peter Luschny, Oct 29 2015
# third program:
A006134 := series(exp(2*x)*BesselI(0, 2*x) + exp(x)*int(BesselI(0, 2*x)*exp(x), x), x = 0, 25):
seq(n!*coeff(A006134, x, n), n=0..24); # Mélika Tebni, Feb 27 2024
-
Table[Sum[((2k)!/(k!)^2),{k,0,n}], {n,0,50}] (* Alexander Adamchuk, Jul 05 2006 *)
a[ n_] := (4/3) Binomial[ 2 n, n] Hypergeometric2F1[ 1/2, 1, -n + 1/2, -1/3] (* Michael Somos, Jun 20 2012 *)
Accumulate[Table[Binomial[2n,n],{n,0,30}]] (* Harvey P. Dale, Jan 11 2015 *)
CoefficientList[Series[1/((1 - x) Sqrt[1 - 4 x]), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 13 2015 *)
-
makelist(sum(binomial(2*k,k),k,0,n),n,0,12); /* Emanuele Munarini, Mar 15 2011 */
-
{a(n) = if( n<0, 0, polcoeff( charpoly( matrix( n+1, n+1, i, j, -binomial( i+j-2, i-1))), 1))} \\ Michael Somos, Jul 10 2002
-
{a(n)=binomial(2*n,n)*sum(k=0,2*n,(-1)^k*polcoeff((1+x+x^2)^n,k)/binomial(2*n,k))} \\ Paul D. Hanna, Aug 21 2007
-
my(x='x+O('x^100)); Vec(1/((1-x)*sqrt(1-4*x))) \\ Altug Alkan, Oct 29 2015
A079309
a(n) = C(1,1) + C(3,2) + C(5,3) + ... + C(2*n-1,n).
Original entry on oeis.org
1, 4, 14, 49, 175, 637, 2353, 8788, 33098, 125476, 478192, 1830270, 7030570, 27088870, 104647630, 405187825, 1571990935, 6109558585, 23782190485, 92705454895, 361834392115, 1413883873975, 5530599237775, 21654401079325, 84859704298201, 332818970772253
Offset: 1
a(4) = C(1,1) + C(3,2) + C(5,3) + C(7,4) = 1 + 3 + 10 + 35 = 49.
G.f. = x + 4*x^2 + 14*x^3 + 49*x^4 + 175*x^5 + 637*x^6 + 2353*x^7 + ...
From _Gus Wiseman_, Apr 16 2023: (Start)
The a(1) = 1 through a(3) = 14 subsets of {1..2n} with median n:
{1} {2} {3}
{1,3} {1,5}
{1,2,3} {2,4}
{1,2,4} {1,3,4}
{1,3,5}
{1,3,6}
{2,3,4}
{2,3,5}
{2,3,6}
{1,2,4,5}
{1,2,4,6}
{1,2,3,4,5}
{1,2,3,4,6}
{1,2,3,5,6}
(End)
- Vincenzo Librandi and Robert Israel, Table of n, a(n) for n = 1..1500 (terms 1..200 from Vincenzo Librandi).
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- R. Witula, Ramanujan type trigonometric formulas, Demonstratio Mathematica, Vol. XLV, No. 4 (2012), 789-796. - From _N. J. A. Sloane_, Jan 01 2013
This is the even (or odd) bisection of
A361801.
-
a := n -> add(binomial(2*j, j)/2, j=1..n): seq(a(n), n=1..24); # Zerinvary Lajos, Oct 25 2006
a := n -> add(abs(binomial(-j, -2*j)), j=1..n): seq(a(n), n=1..24); # Zerinvary Lajos, Oct 03 2007
f:= gfun:-rectoproc({n*a(n) +(-5*n+2)*a(n-1) +2*(2*n-1)*a(n-2)=0,a(1)=1,a(2)=4},a(n),remember):
map(f, [$1..100]); # Robert Israel, Jun 24 2015
-
Rest[CoefficientList[Series[(1/Sqrt[1-4*x]-1)/(1-x)/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
Accumulate[Table[Binomial[2n-1,n],{n,30}]] (* Harvey P. Dale, Jan 06 2021 *)
-
{a(n) = sum(k=1, n, binomial(2*k - 1, k))}; /* Michael Somos, Feb 14 2006 */
-
my(x='x+O('x^40)); Vec((1/sqrt(1-4*x)-1)/(1-x)/2) \\ Altug Alkan, Dec 24 2015
More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 11 2003
A000980
Number of ways of writing 0 as Sum_{k=-n..n} e(k)*k, where e(k) is 0 or 1.
Original entry on oeis.org
2, 4, 8, 20, 52, 152, 472, 1520, 5044, 17112, 59008, 206260, 729096, 2601640, 9358944, 33904324, 123580884, 452902072, 1667837680, 6168510256, 22903260088, 85338450344, 318995297200, 1195901750512, 4495448217544, 16940411201280, 63983233268592
Offset: 0
From _Gus Wiseman_, Apr 23 2023: (Start)
The a(0) = 2 through a(2) = 8 subsets of {-n..n} with sum 0 are:
{} {} {}
{0} {0} {0}
{-1,1} {-1,1}
{-1,0,1} {-2,2}
{-1,0,1}
{-2,0,2}
{-2,-1,1,2}
{-2,-1,0,1,2}
(End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see pp. 715-717.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ray Chandler, Table of n, a(n) for n = 0..1668 (terms < 10^1000; terms 0..200 from T. D. Noe, terms 201..400 from Alois P. Heinz)
- Eunice Y. S. Chan and R. M. Corless, Narayana, Mandelbrot, and A New Kind of Companion Matrix, arXiv preprint arXiv:1606.09132 [math.CO], 2016.
- R. C. Entringer, Representation of m as Sum_{k=-n..n} epsilon_k k, Canad. Math. Bull., 11 (1968), 289-293.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- J. H. van Lint, Representations of 0 as Sum_{k = -N..N} epsilon_k*k, Proc. Amer. Math. Soc., 18 (1967), 182-184.
-
a000980 n = length $ filter ((== 0) . sum) $ subsequences [-n..n]
-
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
`if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
end:
a:=n-> 2*b(0, n):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
-
a[n_] := SeriesCoefficient[ Product[1+x^k, {k, -n, n}], {x, 0, 0}]; a[0] = 2; Table[a[n], {n, 0, 24}](* Jean-François Alcover, Nov 28 2011 *)
nmax = 26; d = {2}; a1 = {};
Do[
i = Ceiling[Length[d]/2];
AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
, {n, nmax}];
a1 (* Ray Chandler, Mar 15 2014 *)
Table[Length[Select[Subsets[Range[-n,n]],Total[#]==0&]],{n,0,5}] (* Gus Wiseman, Apr 23 2023 *)
-
a(n)=polcoeff(prod(k=-n,n,1+x^k),0)
A013580
Triangle formed in same way as Pascal's triangle (A007318) except 1 is added to central element in even-numbered rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 9, 5, 1, 1, 6, 14, 14, 6, 1, 1, 7, 20, 29, 20, 7, 1, 1, 8, 27, 49, 49, 27, 8, 1, 1, 9, 35, 76, 99, 76, 35, 9, 1, 1, 10, 44, 111, 175, 175, 111, 44, 10, 1, 1, 11, 54, 155, 286, 351, 286, 155, 54, 11, 1, 1, 12, 65, 209, 441, 637, 637, 441, 209, 65
Offset: 0
Martin Hecko (bigusm(AT)interramp.com)
Triangle begins:
1
1 1
1 3 1
1 4 4 1
1 5 9 5 1
1 6 14 14 6 1
1 7 20 29 20 7 1
1 8 27 49 49 27 8 1
1 9 35 76 99 76 35 9 1
1 10 44 111 175 175 111 44 10 1
1 11 54 155 286 351 286 155 54 11 1
1 12 65 209 441 637 637 441 209 65 12 1
Central diagonal T(2n+1,n+1) appears to be
A006134.
Central diagonal T(2n,n) appears to be
A079309.
A000975 counts subsets with integer median.
-
CoefficientList[CoefficientList[Series[1/(1 - (1 + y)*x)/(1 - y*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 10 2017 *)
Showing 1-10 of 34 results.
Comments