cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A025443 Number of partitions of n into 4 distinct nonzero squares.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 3, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 0, 1, 2, 0, 0, 3, 0, 0, 2, 1, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A025428 (not necessarily distinct), A025376-A025394 (subsequences), A025417 (greedy inverse).
Column k=4 of A341040.

Programs

  • Maple
    b:= proc(n,i,t) option remember; `if`(n=0, `if`(t=0,1,0),
          `if`(t*i^2n, 0, b(n-i^2,i-1,t-1))))
        end:
    a:= n-> b(n, isqrt(n), 4):
    seq(a(n), n=0..150);  # Alois P. Heinz, Feb 07 2013
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t==0, 1, 0], If[t*i^2n, 0, b[n-i^2, i-1, t-1]]]]; a[n_] := b[n, Sqrt[n] // Floor, 4]; Table[a[n], {n, 0, 150}] (* Jean-François Alcover, Feb 29 2016, after Alois P. Heinz*)
    dnzs[n_]:=Length[Select[IntegerPartitions[n,{4}],Length[Union[#]]==4&&AllTrue[ Sqrt[ #], IntegerQ] && FreeQ[#,0]&]]; Array[dnzs,110,0] (* Harvey P. Dale, Jun 09 2024 *)

Formula

a(n) = [x^n y^4] Product_{k>=1} (1 + y*x^(k^2)). - Ilya Gutkovskiy, Apr 22 2019

A350241 a(n) is the smallest number which can be represented as the sum of n distinct nonzero squares in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

1, 65, 101, 142, 175, 255, 316, 380, 501, 625, 794, 995, 1155, 1456, 1696, 2012, 2373, 2709, 3118, 3566, 4158, 4608, 5211, 5852, 6500, 7221, 8065, 8906, 9766, 11089, 11855, 12868, 14020, 15337, 16601, 17854, 19255, 20840, 22364, 23964, 25813, 27665, 29650, 31635
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2021

Keywords

Examples

			For n = 2: 65 = 1^2 + 8^2 = 4^2 + 7^2.
For n = 3: 101 = 1^2 + 6^2 + 8^2 = 2^2 + 4^2 + 9^2 = 4^2 + 6^2 + 7^2.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Dec 21 2021

A374228 a(n) is the smallest number which can be represented as the sum of four distinct positive n-th powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

10, 90, 1521, 300834
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 01 2024

Keywords

Examples

			a(3) = 1521 = 1^3 + 2^3 + 8^3 + 10^3 = 1^3 + 4^3 + 5^3 + 11^3 = 4^3 + 6^3 + 8^3 + 9^3.
		

Crossrefs

A214513 Least number having n orderless representations as p^2 + q^2 + r^2 + s^2, where p, q, r, and s are primes.

Original entry on oeis.org

16, 148, 196, 436, 388, 628, 868, 988, 1228, 1468, 1708, 2212, 2068, 2860, 2620, 2380, 3220, 3388, 3700, 4108, 3940, 4180, 5260, 4228, 5068, 4900, 5500, 6220, 6340, 7780, 5908, 5740, 6580, 7540, 8260, 7420, 8860, 9340, 11260, 10708, 9940, 9100, 10180, 12820
Offset: 1

Views

Author

T. D. Noe, Jul 29 2012

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 10^5; ps = Prime[Range[PrimePi[Sqrt[nn]]]]; t = Flatten[Table[ps[[i]]^2 + ps[[j]]^2 + ps[[k]]^2 + ps[[l]]^2, {i, Length[ps]}, {j, i, Length[ps]}, {k, j, Length[ps]}, {l, k, Length[ps]}]]; t = Select[t, # <= nn &]; t2 = Sort[Tally[t]]; u = Union[Transpose[t2][[2]]]; d = Complement[Range[u[[-1]]], u]; If[d == {}, nLim = u[[-1]], nLim = d[[1]]-1]; t3 = Table[Select[t2, #[[2]] == n &, 1][[1]], {n, nLim}]; Transpose[t3][[1]]

A374696 a(n) is the smallest number which can be represented as the sum of 4 distinct nonzero fourth powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

354, 6834, 16578, 300834, 2147874, 3847554, 16408434, 13155858, 489597858, 677125218, 780595299, 2374692243, 803898018, 5645172978
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 17 2024

Keywords

Examples

			a(2) = 6834 = 1^4 + 2^4 + 4^4 + 9^4 = 3^4 + 4^4 + 7^4 + 8^4.
a(3) = 16578 = 1^4 + 2^4 + 9^4 + 10^4 = 2^4 + 5^4 + 6^4 + 11^4 = 3^4 + 7^4 + 8^4 + 10^4.
		

Crossrefs

Extensions

a(9)-a(14) from Michael S. Branicky, Jul 21 2024

A374274 a(n) is the smallest number which can be represented as the sum of four distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

47, 142, 344, 652, 834, 1542, 2263, 3090, 4792, 4570, 5844, 8480, 9571, 10542, 15892, 18202, 19587, 23166, 26732, 32040, 36371, 39730, 44709, 52940, 55141, 60362, 67705, 79624, 86906, 89266, 103591, 116246, 126610, 131462, 135324, 148190, 158152, 162422, 186126, 200254
Offset: 3

Views

Author

Ilya Gutkovskiy, Jul 02 2024

Keywords

Examples

			a(3) = 47 = 1 + 3 + 15 + 28 = 1 + 10 + 15 + 21 = 3 + 6 + 10 + 28.
a(4) = 142 = 1^2 + 2^2 + 4^2 + 11^2 = 1^2 + 4^2 + 5^2 + 10^2 = 2^2 + 5^2 + 7^2 + 8^2 = 3^2 + 4^2 + 6^2 + 9^2.
		

Crossrefs

Extensions

a(36) and beyond from Michael S. Branicky, Jul 08 2024

A374807 a(n) is the smallest number which can be represented as the sum of 4 distinct nonzero triangular numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

20, 38, 47, 64, 73, 92, 97, 110, 127, 115, 130, 164, 185, 172, 208, 157, 199, 235, 247, 232, 220, 272, 277, 304, 280, 361, 262, 307, 319, 391, 322, 292, 495, 415, 337, 367, 370, 382, 478, 482, 412, 409, 445, 430, 467, 500, 427, 532, 493
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 20 2024

Keywords

Examples

			a(3) = 47 = 1 + 3 + 15 + 28 = 1 + 10 + 15 + 21 = 3 + 6 + 10 + 28.
		

Crossrefs

A374803 a(n) is the smallest number which can be represented as the sum of 4 distinct positive fifth powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

1300, 4062500, 1479604544
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 20 2024

Keywords

Examples

			a(2) = 4062500 = 1^5 + 14^5 + 16^5 + 19^5 = 5^5 + 10^5 + 15^5 + 20^5.
a(3) = 1479604544 = 3^5 + 48^5 + 52^5 + 61^5 = 13^5 + 36^5 + 51^5 + 64^5 = 18^5 + 36^5 + 44^5 + 66^5.
		

Crossrefs

A374804 a(n) is the smallest number which can be represented as the sum of 4 distinct nonzero sixth powers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

4890, 160426515, 1885800643779
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 20 2024

Keywords

Examples

			a(2) = 160426515 = 1^6 + 3^6 + 19^6 + 22^6 = 1^6 + 10^6 + 15^6 + 23^6.
a(3) = 1885800643779 = 1^6 + 34^6 + 49^6 + 111^6 = 7^6 + 43^6 + 69^6 + 110^6 = 18^6 + 25^6 + 77^6 + 109^6.
		

Crossrefs

Showing 1-9 of 9 results.