cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A025456 Number of partitions of n into 3 positive cubes.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

If A025455(n) > 0 then a(n + k^3) > 0 for k>0; a(A119977(n))>0; a(A003072(n))>0. - Reinhard Zumkeller, Jun 03 2006
a(A057904(n))=0; a(A003072(n))>0; a(A025395(n))=1; a(A008917(n))>1; a(A025396(n))=2. - Reinhard Zumkeller, Apr 23 2009
The first term > 1 is a(251) = 2. - Michel Marcus, Apr 23 2019

Crossrefs

Least inverses are A025418.
Cf. A025455, A003108, A003072 (1 or more ways), A008917 (two or more ways), A025395-A025398.

Programs

  • Maple
    A025456 := proc(n)
        local a,x,y,zcu ;
        a := 0 ;
        for x from 1 do
            if 3*x^3 > n then
                return a;
            end if;
            for y from x do
                if x^3+2*y^3 > n then
                    break;
                end if;
                zcu := n-x^3-y^3 ;
                if isA000578(zcu) then
                    a := a+1 ;
                end if;
            end do:
        end do:
    end proc: # R. J. Mathar, Sep 15 2015
  • Mathematica
    a[n_] := Count[ PowersRepresentations[n, 3, 3], pr_List /; FreeQ[pr, 0]]; Table[a[n], {n, 0, 107}] (* Jean-François Alcover, Oct 31 2012 *)
  • PARI
    a(n)=sum(a=sqrtnint(n\3,3),sqrtnint(n,3),sum(b=1,a,my(C=n-a^3-b^3,c);ispower(C,3,&c)&&0Charles R Greathouse IV, Jun 26 2013

Formula

a(n) = [x^n y^3] Product_{k>=1} 1/(1 - y*x^(k^3)). - Ilya Gutkovskiy, Apr 23 2019

Extensions

Second offset from Michel Marcus, Apr 23 2019

A025419 Least sum of 3 distinct positive cubes in exactly n ways.

Original entry on oeis.org

36, 1009, 5104, 13896, 161568, 1296378, 2016496, 2562624, 14926248, 34012224, 69190848, 150547032, 119095488, 1204376256, 952763904, 1592865000, 3974344704, 2176782336, 10077696000, 2985984000, 36330467328, 30723115968, 23887872000, 17414258688, 72825163776, 75686967000, 204141384000, 62099136000, 139314069504, 245784927744, 80621568000, 191102976000, 272097792000, 373248000000
Offset: 1

Views

Author

Keywords

Comments

a(36) = 496793088000. a(37) = 980922617856. a(38) = 209584584000. a(39) = 644972544000. a(42) = 970299000000. - Donovan Johnson, Nov 13 2010

Crossrefs

Cf. A025418.

Formula

{min k: A025469(k) = n}. - R. J. Mathar, Jun 15 2018

Extensions

a(6)-a(34) from Donovan Johnson, Nov 13 2010

A346071 a(n) is the smallest number m such that m^3 = x^3 + y^3 + z^3, x > y > z > 0, has at least n different solutions.

Original entry on oeis.org

6, 18, 54, 87, 108, 174, 174, 324, 324, 324, 492, 492, 492, 984, 984, 1296, 1296, 1296, 1440, 1440, 2592, 2592, 2592, 2592, 3960, 3960, 3960, 3960, 4320, 4320, 4320, 5760, 5940, 5940, 5940, 5940, 5940, 5940, 8640, 9900, 9900, 9900, 11880, 11880, 11880, 11880, 11880
Offset: 1

Views

Author

Sebastian Magee, Jul 30 2021

Keywords

Comments

a(n) is the smallest number for which there are at least n sets of positive integers (b_i, c_i, d_i) i=1..n which satisfy the equation a(n)^3 = b_i^3 + c_i^3 + d_i^3.
This sequence is related to Euler's sum of powers conjecture. In particular to the case k=3, a(n) is the smallest number that has at least n different solutions to the equation.
The sequences of numbers whose cubes can be expressed as the sum of 3 positive cubes in at least n ways for n = 1, 2, 3, ... form a family of related sequences. This sequence is the sequence of first terms in that family of sequences.
The first of this family is A023042.

Examples

			a(1) = 6 because 6^3 = 5^3 + 4^3 + 3^3; 6 = a(1) = A023042(1).
a(2) = 18 because 18^3 = 15^3 + 12^3 + 9^3 = 16^3 + 12^3 + 2^3.
a(3) = 54 because 54^3 = 45^3 + 36^3 + 27^3 = 48^3 + 36^3 + 6^3 = 53^3 + 19^3 + 12^3.
		

Crossrefs

Programs

  • Python
    import numpy as np
    def residual(a,b,c,d, exp=3):
        return a**exp-b**exp-c**exp-d**exp
    def test(max_n,k=3):
        ans=dict()
        for a in range(max_n):
            #print(a)
            for b in range(int(np.ceil((a**k/3)**(1/k))),a):
                n3=a**k-b**k
                for c in range(int(np.ceil((n3/2)**(1/k))),b):
                    m3=n3-c**k
                    if m3<0:
                        break;
                    l=int(np.ceil((m3)**(1/k)))
                    options=[l,l-1]
                    for d in options:
                        res=residual(a,b,c,d, exp=k)
                        if res==0:
                            if a in ans.keys():
                                ans[a].append((a,b,c,d))
                            else:
                                ans[a]=[(a,b,c,d)]
                            #print("found:",(a,b,c,d))
                            break
                        else:
                            #print("tested: {0}, residual: {1}".format((a,b,c,d),res))
                            if res>0:
                                break
        return ans
    def serie(N):
        result=test(N)
        results_by_number_of_answers=[]
        results_by_number_of_answers.append(result)
        temp=dict()
        for k in result.keys():
            if len(result[k])>=2:
                temp[k]=result[k]
        results_by_number_of_answers.append(temp)
        i=3
        while len(temp)>0:
            temp=dict()
            for k in results_by_number_of_answers[-1].keys():
                if len(results_by_number_of_answers[-1][k])>=i:
                    temp[k]=result[k]
            if len(temp)>0:
                results_by_number_of_answers.append(temp)
            i+=1
        return [next(iter(a)) for a in results_by_number_of_answers]
    #Get the elements of the serie up until A_n>1000
    A=serie(1000)
    print(A)
    
  • Python
    from itertools import combinations
    from collections import Counter
    from sympy import integer_nthroot
    def icbrt(n): return integer_nthroot(n, 3)[0]
    def aupto(mmax):
        cbs = [i**3 for i in range(mmax+1)]
        cbsset = set(cbs)
        c = Counter(sum(c) for c in combinations(cbs, 3) if sum(c) in cbsset)
        nmax = max(c.values())
        return [min(icbrt(s) for s in c if c[s] >= n) for n in range(1, nmax+1)]
    print(aupto(500)) # Michael S. Branicky, Sep 04 2021

Extensions

a(16)-a(31) from Jinyuan Wang, Aug 02 2021
More terms from David A. Corneth, Sep 04 2021

A255018 Smallest number that is the sum of 3 nonnegative cubes in exactly n ways.

Original entry on oeis.org

4, 0, 216, 5104, 13896, 161568, 1259712, 2016496, 2562624, 14926248, 58995000, 34012224, 150547032, 471960000, 119095488, 1259712000, 952763904, 5159780352, 3974344704, 2176782336, 10077696000, 2985984000, 36330467328, 30723115968, 23887872000, 17414258688, 72825163776, 75686967000
Offset: 0

Views

Author

Alex Ratushnyak, Feb 25 2015

Keywords

Examples

			a(0) = 4 because the smallest number that cannot be represented as a sum of 3 nonnegative cubes is 4.
a(1) = 0 is the sum of three 0's.
a(2) = 216 = 3^3 + 4^3 + 5^3 = 6^3 + 0 + 0.
a(3) = 5104 = 1 + 12^3 + 15^3 = 2^3 + 10^3 + 16^3 = 9^3 + 10^3 + 15^3.
		

Crossrefs

Programs

  • Python
    TOP = 6000000
    a = [0]*TOP
    for b in range(TOP):
      b3 = b**3
      if b3*3>=TOP: break
      for c in range(b,TOP):
        c3 = b3 + c**3
        if c3>=TOP: break
        for d in range(c,TOP):
          res = c3 + d**3
          if res>=TOP: break
          a[res] += 1
    m = max(a)
    r = [-1] * (m+1)
    for i in range(TOP):
        if r[a[i]]==-1:  r[a[i]]=i
    print(r)

Extensions

More terms from Rémy Sigrist, Jul 14 2020
Showing 1-4 of 4 results.