cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A026392 T(n,[ n/2 ]), where T is the array in A026386.

Original entry on oeis.org

1, 2, 4, 8, 17, 34, 75, 150, 339, 678, 1558, 3116, 7247, 14494, 34016, 68032, 160795, 321590, 764388, 1528776, 3650571, 7301142, 17501619, 35003238, 84179877, 168359754, 406020930, 812041860, 1963073865, 3926147730
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Conjecture: (n+1)*a(n) +2*(n-1)*a(n-1) +2*(-3*n+1)*a(n-2) +4*(-3*n+7)*a(n-3) +5*(n-3)*a(n-4) +10*(n-5)*a(n-5)=0. - R. J. Mathar, Feb 10 2015

Extensions

Offset corrected. R. J. Mathar, Feb 10 2015

A026387 a(n) = number of integer strings s(0),...,s(n) counted by array T in A026386 that have s(n)=0; also a(n) = T(2n,n).

Original entry on oeis.org

2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, 1528776, 7301142, 35003238, 168359754, 812041860, 3926147730, 19022666310, 92338836390, 448968093320, 2186194166950, 10659569748370, 52037098259090, 254308709196660
Offset: 0

Views

Author

Keywords

Crossrefs

Essentially the same as A085362.
Cf. A026378.

Formula

a(n) = A085362(n+1), n >= 0. - Hartmut F. W. Hoft, Jul 07 2024

A026388 a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026386 that have s(n)=2; also a(n) = T(2n,n-1).

Original entry on oeis.org

1, 5, 24, 114, 541, 2573, 12275, 58747, 282003, 1357407, 6549906, 31675020, 153481299, 745011075, 3622111560, 17635418730, 85975792075, 419644943495, 2050493623760, 10029194506990, 49098707209695, 240568930012575
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    Table[HypergeometricPFQ[{3/2, 2, 1-n}, {1, 3}, -4], {n, 1, 20}] (* Vladimir Reshetnikov, Apr 25 2016 *)

Formula

a(n) = hypergeom([3/2, 2, 1-n], [1, 3], -4). - Vladimir Reshetnikov, Apr 25 2016
D-finite with recurrence -(n+1)*(2*n-1)*a(n) +(12*n^2-2*n+1)*a(n-1) -5*(2*n+1)*(n-2)*a(n-2)=0. - R. J. Mathar, Jun 21 2018
G.f.: ((x-1)*sqrt((5*x-1)/(x-1))-3*x+1)/(2*x*sqrt((5*x-1)/(x-1))). - Vladimir Kruchinin, Sep 17 2020
a(n) = Sum_{k=1..n} C(2*k,k-1)*C(n-1,k-1). - Vladimir Kruchinin, Sep 17 2020
a(n) ~ 2 * 5^(n - 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Sep 17 2020

A026389 a(n) = number of integer strings s(0),...,s(n) counted by array T in A026386 that have s(n)=4; also a(n) = T(2n,n-2).

Original entry on oeis.org

1, 8, 49, 272, 1440, 7428, 37730, 189808, 948909, 4724160, 23453001, 116207424, 575036475, 2842936320, 14046869575, 69378730880, 342590699955, 1691519468760, 8351553940355, 41235710124400, 203617691311370, 1005560117623204
Offset: 2

Views

Author

Keywords

Comments

Binomial transform of A002694. - Ross La Haye, Mar 05 2005

Formula

Conjecture: (n+2)*a(n) +4*(-3*n-2)*a(n-1) +2*(24*n-19)*a(n-2) +4*(-18*n+43)*a(n-3) +35*(n-4)*a(n-4)=0. - R. J. Mathar, May 29 2013

A026393 a(n) = T(n,n-2), where T is the array in A026386.

Original entry on oeis.org

1, 4, 8, 17, 24, 39, 49, 70, 83, 110, 126, 159, 178, 217, 239, 284, 309, 360, 388, 445, 476, 539, 573, 642, 679, 754, 794, 875, 918, 1005, 1051, 1144, 1193, 1292, 1344, 1449, 1504, 1615, 1673, 1790, 1851, 1974, 2038, 2167, 2234, 2369, 2439, 2580, 2653, 2800
Offset: 2

Views

Author

Keywords

Programs

  • PARI
    Vec(x^2*(1+3*x+2*x^2+3*x^3)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 26 2016

Formula

G.f.: x^2*(1+3*x+2*x^2+3*x^3) / ((1-x)^3*(1+x)^2). - Emeric Deutsch, Feb 18 2004
From Colin Barker, Jan 26 2016: (Start)
a(n) = (18*n^2-46*n+(-1)^n*(13-6*n)+35)/16.
a(n) = (9*n^2-26*n+24)/8 for n even.
a(n) = (9*n^2-20*n+11)/8 for n odd.
(End)

A026394 a(n) = T(n,n-3), where T is the array in A026386.

Original entry on oeis.org

1, 5, 17, 34, 75, 114, 202, 272, 425, 535, 771, 930, 1267, 1484, 1940, 2224, 2817, 3177, 3925, 4370, 5291, 5830, 6942, 7584, 8905, 9659, 11207, 12082, 13875, 14880, 16936, 18080, 20417, 21709, 24345, 25794, 28747, 30362, 33650, 35440, 39081, 41055, 45067
Offset: 3

Views

Author

Keywords

Programs

  • Mathematica
    t[n_, 0] := 1; t[n_, n_] := 1; t[n_, k_] := t[n, k] = Which[EvenQ@ n, t[n - 1, k - 1] + t[n - 1, k], OddQ@ n, t[n - 1, k - 1] + t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, n - 3], {n, 3, 45}] (* Michael De Vlieger, Jan 29 2016, after Clark Kimberling at A026386 *)
  • PARI
    Vec(x^3*(1+4*x+9*x^2+5*x^3+8*x^4)/((1-x)^4*(1+x)^3) + O(x^100)) \\ Colin Barker, Jan 29 2016

Formula

G.f.: x^3*(1+4*x+9*x^2+5*x^3+8*x^4) / ((1-x)^4*(1+x)^3). - Emeric Deutsch, Feb 18 2004
From Colin Barker, Jan 29 2016: (Start)
a(n) = (18*n^3-9*(-1)^n*n^2-111*n^2+53*(-1)^n*n+243*n-75*(-1)^n-181)/32.
a(n) = (9*n^3-60*n^2+148*n-128)/16 for n even.
a(n) = (9*n^3-51*n^2+95*n-53)/16 for n odd.
(End)

A026396 Sum_{T(i,j)}, 0<=j<=i, 0<=i<=n, where T is the array in A026386.

Original entry on oeis.org

3, 7, 17, 37, 87, 187, 437, 937, 2187, 4687, 10937, 23437, 54687, 117187, 273437, 585937, 1367187, 2929687, 6835937, 14648437, 34179687, 73242187, 170898437, 366210937, 854492187, 1831054687, 4272460937, 9155273437, 21362304687, 45776367187, 106811523437
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026386.

Programs

  • Mathematica
    LinearRecurrence[{1, 5, -5}, {3, 7, 17}, 50] (* Paolo Xausa, Sep 16 2024 *)
  • PARI
    Vec((-5*x^2 + 4*x + 3)/(5*x^3 - 5*x^2 - x + 1) + O(x^40)) \\ Colin Barker, Nov 25 2016

Formula

G.f.: (3+4*x-5*x^2) / ((1-x)*(1-5*x^2)). - Ralf Stephan, Apr 30 2004
From Colin Barker, Nov 25 2016: (Start)
a(n) = (7*5^(n/2) - 1)/2 for n even.
a(n) = (6*5^((n+1)/2) - 2)/4 for n odd.
a(n) = a(n-1) + 5*a(n-2) - 5*a(n-3) for n>2. (End)
a(n) = (3-(-1)^n-(13+(-1)^n)*5^((1-(-1)^n+2*n)/4))/(2*(-1)^n-6). - Wesley Ivan Hurt, Oct 02 2021

A026955 a(n) = Sum_{k=0..n} (k+1) * T(n,k), with T given by A026386.

Original entry on oeis.org

1, 3, 8, 25, 60, 175, 400, 1125, 2500, 6875, 15000, 40625, 87500, 234375, 500000, 1328125, 2812500, 7421875, 15625000, 41015625, 85937500, 224609375, 468750000, 1220703125, 2539062500, 6591796875, 13671875000, 35400390625
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026386.

Programs

  • PARI
    a(n) = if(n==0, 1, (n + 2) * (7 - 3*(-1)^n) * 5^floor(n/2) / 10) \\ Andrew Howroyd, Dec 27 2024

Formula

a(n) = (n + 2) * (7 - 3*(-1)^n) * 5^floor(n/2) / 10 for n > 0.
From Colin Barker, Oct 13 2012: (Start)
a(n) = 10*a(n-2) - 25*a(n-4) for n>4.
G.f.: (5*x^4-5*x^3-2*x^2+3*x+1)/(5*x^2-1)^2. (End)

A026397 Sum{T(n-k,k)}, 0<=k<=[ n/2 ], where T is the array in A026386.

Original entry on oeis.org

1, 2, 3, 6, 10, 17, 31, 53, 92, 163, 282, 492, 863, 1501, 2621, 4582, 7987, 13946, 24354, 42489, 74179, 129497, 226000, 394523, 688670, 1202020, 2098239, 3662553, 6392969, 11159290, 19478867, 34000750, 59349706, 103596641
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    LinearRecurrence[{0,1,3,1},{1,2,3,6},40] (* Harvey P. Dale, Apr 15 2015 *)

Formula

Pairwise sums of A026385. - Ralf Stephan, Jul 22 2003
G.f.: [(1+x)(1+x+x^2)]/[1-x^2-3x^3-x^4]. - Ralf Stephan, Apr 30 2004

A026951 Self-convolution of array T given by A026386.

Original entry on oeis.org

1, 2, 6, 34, 116, 678, 2438, 14494, 53538, 321590, 1207186, 7301142, 27702096, 168359754, 643682106, 3926147730, 15096518580, 92338836390, 356629256930, 2186194166950, 8473375581420, 52037098259090, 202271610937570, 1244063987615130, 4847394356321770, 29851422385561898
Offset: 0

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Oct 17 2019
Showing 1-10 of 16 results. Next