A026532 Ratios of successive terms are 3, 2, 3, 2, 3, 2, 3, 2, ...
1, 3, 6, 18, 36, 108, 216, 648, 1296, 3888, 7776, 23328, 46656, 139968, 279936, 839808, 1679616, 5038848, 10077696, 30233088, 60466176, 181398528, 362797056, 1088391168, 2176782336, 6530347008, 13060694016, 39182082048, 78364164096, 235092492288, 470184984576
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..700
- Sean A. Irvine, Walks on Graphs.
- José L. Ramírez, Bi-periodic incomplete Fibonacci sequences, Annales Mathematicae et Informaticae 42 (2013), 83-92. See the 1st column of Table 1 on p. 85.
- Index entries for linear recurrences with constant coefficients, signature (0,6).
Crossrefs
Programs
-
Haskell
a026532 n = a026532_list !! (n-1) a026532_list = scanl (*) 1 $ a176059_list -- Reinhard Zumkeller, Apr 04 2012
-
Magma
[(1/4)*(3-(-1)^n)*6^Floor(n/2) : n in [1..30]]; // Vincenzo Librandi, Jun 08 2011
-
Mathematica
FoldList[(2 + Boole[EvenQ@ #2]) #1 &, Range@ 28] (* or *) CoefficientList[Series[x*(1+3x)/(1-6x^2), {x,0,31}], x] (* Michael De Vlieger, Aug 02 2017 *) LinearRecurrence[{0,6},{1,3},30] (* Harvey P. Dale, Jul 11 2018 *)
-
PARI
a(n)=if(n%2,3,1)*6^(n\2) \\ Charles R Greathouse IV, Jul 02 2013
-
Python
def a(n): return (3 if n%2 else 1)*6**(n//2) print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 02 2017
-
Sage
[(1/2)*6^((n-2)/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)) for n in (1..30)] # G. C. Greubel, Dec 21 2021
Formula
a(n) = T(n, 0) + T(n, 1) + ... + T(n, 2n-2), T given by A026519.
From Benoit Cloitre, Nov 14 2003: (Start)
a(n) = (1/2)*(5+(-1)^n)*a(n-1) for n>1, a(1) = 1.
a(n) = (1/4)*(3-(-1)^n)*6^floor(n/2). (End)
From Ralf Stephan, Feb 03 2004: (Start)
G.f.: x*(1+3*x)/(1-6*x^2).
a(n+2) = 6*a(n). (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (1/2)*6^((n-2)/2)*(3*(1+(-1)^n) + sqrt(6)*(1-(-1)^n)). - G. C. Greubel, Dec 21 2021
Sum_{n>=1} 1/a(n) = 8/5. - Amiram Eldar, Feb 13 2023
Extensions
New definition from Ralf Stephan, Dec 01 2004
Offset changed from 0 to 1 by Vincenzo Librandi, Jun 08 2011
Comments