cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026549 Ratios of successive terms are 2, 3, 2, 3, 2, 3, 2, 3, ...

Original entry on oeis.org

1, 2, 6, 12, 36, 72, 216, 432, 1296, 2592, 7776, 15552, 46656, 93312, 279936, 559872, 1679616, 3359232, 10077696, 20155392, 60466176, 120932352, 362797056, 725594112, 2176782336, 4353564672, 13060694016, 26121388032, 78364164096, 156728328192, 470184984576, 940369969152
Offset: 0

Views

Author

Keywords

Comments

Appears to be the number of permutations p of {1,2,...,n} such that p(i)+p(i+1)>=n for every i=1,2,...,n-1 (if offset is 1). - Vladeta Jovovic, Dec 15 2003
Equals eigensequence of a triangle with 1's in even columns and (1,3,3,3,...) in odd columns. a(5) = 72 = (1, 3, 1, 3, 1, 1) dot (1, 1, 2, 6, 12, 36) = (1 + 3 + 2 + 18 + 12 + 36), where (1, 3, 1, 3, 1, 1) = row 5 of the generating triangle. - Gary W. Adamson, Aug 02 2010
Partial products of A010693. - Reinhard Zumkeller, Mar 29 2012
Satisfies Benford's law [Theodore P. Hill, Personal communication, Feb 06, 2017]. - N. J. A. Sloane, Feb 08 2017
For n >= 2, a(n) is the least k > a(n-1) such that both k and a(n-2) + a(n-1) + k have exactly n prime factors, counted with multiplicity. - Robert Israel, Aug 06 2024

Examples

			G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 36*x^4 + 72*x^5 + 216*x^6 + ... - _Michael Somos_, Apr 09 2022
		

References

  • Arno Berger and Theodore P. Hill, An Introduction to Benford's Law, Princeton University Press, 2015.

Crossrefs

Programs

  • Haskell
    a026549 n = a026549_list !! n
    a026549_list = scanl (*) 1 $ a010693_list
    -- Reinhard Zumkeller, Mar 29 2012
    
  • Magma
    [(1/2)*(3-(-1)^n)*6^Floor(n/2): n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
    
  • Maple
    seq(seq(2^i*3^j, i=j..j+1),j=0..30); # Robert Israel, Aug 06 2024
  • Mathematica
    LinearRecurrence[{0,6},{1,2},30] (* Harvey P. Dale, May 29 2016 *)
  • PARI
    {a(n) = 6^(n\2) * (n%2+1)}; /* Michael Somos, Apr 09 2022 */
  • SageMath
    [(1+(n%2))*6^(n//2) for n in (0..30)] # G. C. Greubel, Apr 09 2022
    

Formula

Equals T(n, 0) + T(n, 1) + ... + T(n, 2n), T given by A026536.
a(n) = 2*A026532(n), for n > 0.
G.f.: (1+2*x)/(1-6*x^2) - Paul Barry, Aug 25 2003
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (1/2)*(3 - (-1)^n)*6^floor(n/2), or a(n) = 6*a(n-2). - Vincenzo Librandi, Jun 08 2011
a(n) = 1/a(-n) if n is even and (2/3)/a(-n) if n is odd for all n in Z. - Michael Somos, Apr 09 2022
Sum_{n>=0} 1/a(n) = 9/5. - Amiram Eldar, Feb 13 2023

Extensions

New definition from Ralf Stephan, Dec 01 2004