A026549 Ratios of successive terms are 2, 3, 2, 3, 2, 3, 2, 3, ...
1, 2, 6, 12, 36, 72, 216, 432, 1296, 2592, 7776, 15552, 46656, 93312, 279936, 559872, 1679616, 3359232, 10077696, 20155392, 60466176, 120932352, 362797056, 725594112, 2176782336, 4353564672, 13060694016, 26121388032, 78364164096, 156728328192, 470184984576, 940369969152
Offset: 0
Examples
G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 36*x^4 + 72*x^5 + 216*x^6 + ... - _Michael Somos_, Apr 09 2022
References
- Arno Berger and Theodore P. Hill, An Introduction to Benford's Law, Princeton University Press, 2015.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..700
- Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, International Journal of Combinatorics, Vol. 2014 (2014), Article ID 301394, 7 pages; arXiv preprint, arXiv:1312.0583 [math.CO], 2013.
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (0,6).
- Index entries for sequences related to Benford's law.
Programs
-
Haskell
a026549 n = a026549_list !! n a026549_list = scanl (*) 1 $ a010693_list -- Reinhard Zumkeller, Mar 29 2012
-
Magma
[(1/2)*(3-(-1)^n)*6^Floor(n/2): n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
-
Maple
seq(seq(2^i*3^j, i=j..j+1),j=0..30); # Robert Israel, Aug 06 2024
-
Mathematica
LinearRecurrence[{0,6},{1,2},30] (* Harvey P. Dale, May 29 2016 *)
-
PARI
{a(n) = 6^(n\2) * (n%2+1)}; /* Michael Somos, Apr 09 2022 */
-
SageMath
[(1+(n%2))*6^(n//2) for n in (0..30)] # G. C. Greubel, Apr 09 2022
Formula
Equals T(n, 0) + T(n, 1) + ... + T(n, 2n), T given by A026536.
a(n) = 2*A026532(n), for n > 0.
G.f.: (1+2*x)/(1-6*x^2) - Paul Barry, Aug 25 2003
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = (1/2)*(3 - (-1)^n)*6^floor(n/2), or a(n) = 6*a(n-2). - Vincenzo Librandi, Jun 08 2011
a(n) = 1/a(-n) if n is even and (2/3)/a(-n) if n is odd for all n in Z. - Michael Somos, Apr 09 2022
Sum_{n>=0} 1/a(n) = 9/5. - Amiram Eldar, Feb 13 2023
Extensions
New definition from Ralf Stephan, Dec 01 2004
Comments