cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027307 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis) and where each step is (2,1), (1,2) or (1,-1).

Original entry on oeis.org

1, 2, 10, 66, 498, 4066, 34970, 312066, 2862562, 26824386, 255680170, 2471150402, 24161357010, 238552980386, 2375085745978, 23818652359682, 240382621607874, 2439561132029314, 24881261270812490, 254892699352950850
Offset: 0

Views

Author

Keywords

Comments

These are the 3-Schroeder numbers according to Yang-Jiang (2021). - N. J. A. Sloane, Mar 28 2021
Equals row sums of triangle A104978 which has g.f. F(x,y) that satisfies: F = 1 + x*F^2 + x*y*F^3. - Paul D. Hanna, Mar 30 2005
a(n) counts ordered complete ternary trees with 2*n + 1 leaves, where the internal vertices come in two colors and such that each vertex and its rightmost child have different colors. See [Drake, Example 1.6.9]. An example is given below. - Peter Bala, Sep 29 2011
a(n) for n >= 1 is the number of compact coalescent histories for matching lodgepole gene trees and species trees with n cherries and 2n+1 leaves. - Noah A Rosenberg, Jun 21 2022
a(n) is the maximum number of distinct sets that can be obtained as complete parenthesizations of “S_1 union S_2 intersect S_3 union S_4 intersect S_5 union ... union S_{2*n} intersect S_{2*n+1}”, where n union and n intersection operations alternate, starting with a union, and S_1, S_2, ... , S_{2*n+1} are sets. - Alexander Burstein, Nov 22 2023

Examples

			a(2) = 10. Internal vertices colored either b(lack) or w(hite); 5 uncolored leaf vertices shown as o.
........b...........b.............w...........w.....
......./|\........./|\.........../|\........./|\....
....../.|.\......./.|.\........./.|.\......./.|.\...
.....b..o..o.....o..b..o.......w..o..o.....o..w..o..
..../|\............/|\......../|\............/|\....
.../.|.\........../.|.\....../.|.\........../.|.\...
..o..o..o........o..o..o....o..o..o........o..o..o..
....................................................
........b...........b.............w...........w.....
......./|\........./|\.........../|\........./|\....
....../.|.\......./.|.\........./.|.\......./.|.\...
.....w..o..o.....o..w..o.......b..o..o.....o..b..o..
..../|\............/|\......../|\............/|\....
.../.|.\........../.|.\....../.|.\........../.|.\...
..o..o..o........o..o..o....o..o..o........o..o..o..
....................................................
........b...........w..........
......./|\........./|\.........
....../.|.\......./.|.\........
.....o..o..w.....o..o..b.......
........../|\........./|\......
........./.|.\......./.|.\.....
........o..o..o.....o..o..o....
...............................
From _Alexander Burstein_, Feb 14 2025: (Start)
a(2) = 10 as the maximum number of distinct sets obtained as complete parenthesizations of S_1 u(nion) S_2 (i)n(tersect) S_3 u(nion) S_4 (i)n(tersect) S_5:
S_1 u (S_2 n (S_3 u (S_4 n S_5))),
S_1 u (S_2 n ((S_3 u S_4) n S_5)) = S_1 u ((S_2 n (S_3 u S_4)) n S_5),
S_1 u ((S_2 n S_3) u (S_4 n S_5)) = (S_1 u (S_2 n S_3)) u (S_4 n S_5),
S_1 u (((S_2 n S_3) u S_4) n S_5),
(S_1 u S_2) n (S_3 u (S_4 n S_5)),
(S_1 u S_2) n ((S_3 u S_4) n S_5) = ((S_1 u S_2) n (S_3 u S_4)) n S_5,
((S_1 u S_2) n S_3) u (S_4 n S_5),
(S_1 u (S_2 n (S_3 u S_4))) n S_5,
(S_1 u ((S_2 n S_3) u S_4)) n S_5 = ((S_1 u (S_2 n S_3)) u S_4) n S_5,
(((S_1 u S_2) n S_3) u S_4) n S_5. (End)
		

References

  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021
Apart from first term, this is 2*A034015. - N. J. A. Sloane, Mar 28 2021

Programs

  • Mathematica
    a[n_] := ((n+1)*(2n)!*Hypergeometric2F1[-n, 2n+1, n+2, -1]) / (n+1)!^2;
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 14 2011, after Pari *)
    a[n_] := If[n == 0, 1, 2*Hypergeometric2F1[1 - n, -2 n, 2, 2]];
    Table[a[n], {n, 0, 19}]  (* Peter Luschny, Nov 08 2021 *)
  • PARI
    a(n)=if(n<1,n==0,sum(i=0,n-1,2^(i+1)*binomial(2*n,i)*binomial(n,i+1))/n)
    
  • PARI
    a(n)=sum(k=0,n,binomial(2*n+k,n+2*k)*binomial(n+2*k,k)/(n+k+1)) \\ Paul D. Hanna
    
  • PARI
    a(n)=sum(k=0,n, binomial(n,k)*binomial(2*n+k+1,n)/(2*n+k+1) ) /* Michael Somos, May 23 2005 */

Formula

G.f.: (2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3.
a(n) = (1/n) * Sum_{i=0..n-1} 2^(i+1)*binomial(2*n, i)*binomial(n, i+1), n>0.
a(n) = 2*A034015(n-1), n>0.
a(n) = Sum_{k=0..n} C(2*n+k, n+2*k)*C(n+2*k, k)/(n+k+1). - Paul D. Hanna, Mar 30 2005
Given g.f. A(x), y=A(x)x satisfies 0=f(x, y) where f(x, y)=x(x-y)+(x+y)y^2 . - Michael Somos, May 23 2005
Series reversion of x(Sum_{k>=0} a(k)x^k) is x(Sum_{k>=0} A085403(k)x^k).
G.f. A(x) satisfies A(x)=A006318(x*A(x)). - Vladimir Kruchinin, Apr 18 2011
The function B(x) = x*A(x^2) satisfies B(x) = x+x*B(x)^2+B(x)^3 and hence B(x) = compositional inverse of x*(1-x^2)/(1+x^2) = x+2*x^3+10*x^5+66*x^7+.... Let f(x) = (1+x^2)^2/(1-4*x^2+x^4) and let D be the operator f(x)*d/dx. Then a(n) equals 1/(2*n+1)!*D^(2*n)(f(x)) evaluated at x = 0. For a refinement of this sequence see A196201. - Peter Bala, Sep 29 2011
D-finite with recurrence: 2*n*(2*n+1)*a(n) = (46*n^2-49*n+12)*a(n-1) - 3*(6*n^2-26*n+27)*a(n-2) - (n-3)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ sqrt(50+30*sqrt(5))*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012. Equivalently, a(n) ~ phi^(5*n + 1) / (2 * 5^(1/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
a(n) = 2*hypergeom([1 - n, -2*n], [2], 2) for n >= 1. - Peter Luschny, Nov 08 2021
From Peter Bala, Jun 16 2023: (Start)
P-recursive: n*(2*n + 1)*(5*n - 7)*a(n) = (110*n^3 - 264*n^2 + 181*n - 36)*a(n-1) + (n - 2)*(2*n - 3)*(5*n - 2)*a(n-2) with a(0) = 1 and a(1) = 2.
The g.f. A(x) = 1 + 2*x + 10*x^2 + 66*x^3 + ... satisfies A(x)^2 = (1/x) * the series reversion of x*((1 - x)/(1 + x))^2.
Define b(n) = [x^(2*n)] ( (1 + x)/(1 - x) )^n = (1/2) * [x^n] ((1 + x)/(1 - x))^(2*n) = A103885(n). Then A(x) = exp( Sum_{n >= 1} b(n)*x^n/n ). (End)
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-k) for n > 0. - Seiichi Manyama, Aug 09 2023