A027468 9 times the triangular numbers A000217.
0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315
Offset: 0
Examples
The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4 are 3+3+3, 6+6+6+3+3+3, 9+9+9+6+6+6+3+3+3, 12+12+12+9+9+9+6+6+6+3+3+3. - _Augustine O. Munagi_, Dec 18 2008
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Augustine O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., Vol. 308, No. 12 (2008), pp. 2492-2501.
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Leo Tavares, Illustration: Centroid Triangles.
- D. Zvonkine, Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results), Moscow Mathematical Journal, Vol. 7, No. 1 (2007), pp. 135-162.
- D. Zvonkine, Home Page.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for two-way infinite sequences.
Crossrefs
Programs
-
Magma
[9*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Dec 29 2012
-
Maple
[seq(9*binomial(n+1,2), n=0..50)]; # Zerinvary Lajos, Nov 24 2006
-
Mathematica
Table[(9/2)*n*(n+1), {n,0,50}] (* G. C. Greubel, Aug 22 2017 *)
-
PARI
a(n)=9*n*(n+1)/2
-
Sage
[9*binomial(n+1, 2) for n in (0..50)] # G. C. Greubel, May 20 2021
Formula
Numerators of sequence a[n, n-2] in (a[i, j])^2 where a[i, j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = (9/2)*n*(n+1).
a(n) = 9*C(n, 1) + 9*C(n, 2) (binomial transform of (0, 9, 9, 0, 0, ...)). - Paul Barry, Mar 15 2003
G.f.: 9*x/(1-x)^3.
a(-1-n) = a(n).
a(n) = 9*C(n+1,2), n>=0. - Zerinvary Lajos, Aug 06 2008
a(n) = a(n-1) + 9*n (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = A060544(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A218470(9*n+8). - Philippe Deléham, Mar 27 2013
E.g.f.: (9/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 22 2017
a(n) = A060544(n+1) - 1. See Centroid Triangles illustration. - Leo Tavares, Dec 27 2021
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 2/9. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(9/(2*Pi))*cos(sqrt(17)*Pi/6).
Product_{n>=1} (1 + 1/a(n)) = 9*sqrt(3)/(4*Pi). (End)
Extensions
More terms from Patrick De Geest, Oct 15 1999
Comments