cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027472 Third convolution of the powers of 3 (A000244).

Original entry on oeis.org

1, 9, 54, 270, 1215, 5103, 20412, 78732, 295245, 1082565, 3897234, 13817466, 48361131, 167403915, 573956280, 1951451352, 6586148313, 22082967873, 73609892910, 244074908070, 805447196631, 2646469360359, 8661172452084, 28242953648100, 91789599356325, 297398301914493, 960825283108362, 3095992578904722
Offset: 3

Views

Author

Keywords

Comments

Third column of A027465.
With offset = 2, a(n) is the number of length n words on alphabet {u,v,w,z} such that each word contains exactly 2 u's. - Zerinvary Lajos, Dec 29 2007

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), this sequence (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [3^(n-3)*Binomial(n-1, 2): n in [3..40]]; // G. C. Greubel, May 12 2021
  • Mathematica
    nn=41; Drop[Range[0,nn]!CoefficientList[Series[Exp[x]^3 x^2/2!,{x,0,nn}],x],2] (* Geoffrey Critzer, Oct 03 2013 *)
    LinearRecurrence[{9,-27,27}, {1,9,54}, 40] (* G. C. Greubel, May 12 2021 *)
    Abs[Take[CoefficientList[Series[1/(1+3x^2)^3,{x,0,60}],x],{1,-1,2}]] (* Harvey P. Dale, Mar 03 2022 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 27,-27,9]^(n-3)*[1;9;54])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [3^(n-3)*binomial(n-1,2) for n in range(3, 40)] # Zerinvary Lajos, Mar 10 2009
    

Formula

Numerators of sequence a[3,n] in (b^2)[i,j]) where b[i,j] = binomial(i-1, j-1)/2^(i-1) if j <= i, 0 if j > i.
From Wolfdieter Lang: (Start)
a(n) = 3^(n-3)*binomial(n-1, 2).
G.f.: (x/(1-3*x))^3. (Third convolution of A000244, powers of 3.) (End)
a(n) = |A075513(n, 2)|/9, n >= 3.
a(n) = A152818(n-3,2)/2 = A006043(n-3)/2. - Paul Curtz, Jan 07 2009
The sequence 0, 1, 9, 54, ... has e.g.f.: (x + 3*x^2/2)*exp(3*x)/. - Paul Barry, Jul 23 2003
E.g.f.: E(0) where E(k) = 1 + 3*(2*k+3)*x/((2*k+1)^2 - 3*x*(k+2)*(2*k+1)^2/(3*x*(k+2) + 2*(k+1)^2/E(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
With offset=2 e.g.f.: x^2*exp(3*x)/2. - Geoffrey Critzer, Oct 03 2013
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=3} 1/a(n) = 6 - 12*log(3/2).
Sum_{n>=3} (-1)^(n+1)/a(n) = 24*log(4/3) - 6. (End)

Extensions

Corrected by T. D. Noe, Nov 07 2006
Better name from Wolfdieter Lang
Terms a(23) onward added by G. C. Greubel, May 12 2021