cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027578 Sums of five consecutive squares: a(n) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2 + (n+4)^2.

Original entry on oeis.org

30, 55, 90, 135, 190, 255, 330, 415, 510, 615, 730, 855, 990, 1135, 1290, 1455, 1630, 1815, 2010, 2215, 2430, 2655, 2890, 3135, 3390, 3655, 3930, 4215, 4510, 4815, 5130, 5455, 5790, 6135, 6490, 6855, 7230, 7615, 8010, 8415, 8830, 9255, 9690, 10135, 10590, 11055
Offset: 0

Views

Author

Keywords

Comments

a(n) is defined for n < 0 and a(-n) = a(n-4) for any n; a(-3) = a(-1) = 15, a(-2) = 10. - Jean-Christophe Hervé, Nov 11 2015

Crossrefs

Programs

  • Magma
    [n^2+(n+1)^2+(n+2)^2+(n+3)^2+(n+4)^2: n in [0..50] ]; // Vincenzo Librandi, Jun 17 2011
    
  • Maple
    A027578:=n->5*(n+2)^2+10: seq(A027578(n), n=0..50); # Wesley Ivan Hurt, Nov 12 2015
  • Mathematica
    Table[5 (n + 2)^2 + 10, {n, 0, 50}] (* Bruno Berselli, Jul 29 2015 *)
    Total/@Partition[Range[0,50]^2,5,1] (* or *) LinearRecurrence[{3,-3,1},{30,55,90},50] (* Harvey P. Dale, Mar 06 2018 *)
  • PARI
    vector(100, n, n--; n^2+(n+1)^2+(n+2)^2+(n+3)^2+(n+4)^2) \\ Altug Alkan, Nov 11 2015
  • Sage
    [i^2+(i+1)^2+(i+2)^2+(i+3)^2+(i+4)^2 for i in range(0,50)] # Zerinvary Lajos, Jul 03 2008
    

Formula

a(n) = 5*A059100(n+2).
From Colin Barker, Mar 29 2012: (Start)
G.f.: 5*(6-7*x+3*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)
a(n) = 5*(n + 2)^2 + 10. a(n) is never square. - Bruno Berselli, Jul 29 2015
E.g.f.: 5*(6 + 5*x + x^2)*exp(x). - G. C. Greubel, Aug 24 2022
From Amiram Eldar, Sep 15 2022: (Start)
Sum_{n>=0} 1/a(n) = coth(sqrt(2)*Pi)*Pi/(10*sqrt(2)) - 7/60.
Sum_{n>=0} (-1)^n/a(n) = cosech(sqrt(2)*Pi)*Pi/(10*sqrt(2)) + 1/60. (End)