A000266 Expansion of e.g.f. exp(-x^2/2) / (1-x).
1, 1, 1, 3, 15, 75, 435, 3045, 24465, 220185, 2200905, 24209955, 290529855, 3776888115, 52876298475, 793144477125, 12690313661025, 215735332237425, 3883235945814225, 73781482970470275, 1475629660064134575, 30988222861346826075, 681740902935880863075
Offset: 0
Keywords
Examples
a(3) = 3 because the permutations in S_3 that contain no transpositions are the trivial permutation and the two 3-cycles.
References
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (first 101 terms from T. D. Noe)
- Larry Carter and Stan Wagon, The Mensa Correctional Institute, The American Mathematical Monthly 125.4 (2018): 306-319.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 104
- Simon Plouffe, Exact formulas for integer sequences, March 1993.
Programs
-
Maple
G:=exp(-z^2/2)/(1-z): Gser:=series(G,z=0,26): for n from 0 to 25 do a(n):=n!*coeff(Gser,z,n): end do: seq(a(n), n=0..20); # Paul Weisenhorn, May 29 2010 # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( a(n-j)*(j-1)!*binomial(n-1, j-1), j=[1, $3..n])) end: seq(a(n), n=0..30); # Alois P. Heinz, May 12 2016
-
Mathematica
a=Log[1/(1-x)]-x^2/2; Range[0,20]! CoefficientList[Series[Exp[a], {x,0,20}], x] (* Geoffrey Critzer, Nov 29 2011 *)
-
PARI
{a(n) = if( n<0, 0, n! * polcoeff( exp(-(x^2/2)+x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */
Formula
E.g.f.: exp( x + Sum_{k>2} x^k / k ). - Michael Somos, Jul 25 2011
a(n) = n! * Sum_{i=0..floor(n/2)} (-1)^i /(i! * 2^i); a(n)/n! ~ Sum_{i>=0} (-1)^i /(i! * 2^i) = e^(-1/2); a(n) ~ e^(-1/2) * n!; a(n) ~ e^(-1/2) * (n/e)^n * sqrt(2*Pi*n). - Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
A027616(n) + a(n) = n!. - Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 09 2003
a(n) = n!*floor((floor(n/2)! * 2^floor(n/2) / exp(1/2) + 1/2)) / (floor(n/2)! * 2^floor(n/2)), n >= 0. - Simon Plouffe from old notes, 1993
E.g.f.: 1/(1-x)*exp(-(x^2)/2) = 1/((1-x)*G(0)); G(k) = 1+(x^2)/(2*(2*k+1)-2*(x^2)*(2*k+1)/((x^2)+4*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
E.g.f.: 1/Q(0), where Q(k) = 1 - x/(1 - x/(x - (2*k+2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
D-finite with recurrence: a(n) - n*a(n-1) + (n-1)*a(n-2) - (n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Feb 16 2020
Extensions
More terms from Christian G. Bower
Entry improved by comments from Michael Somos, Jul 28 2009
Minor editing by Johannes W. Meijer, Jul 25 2011
Comments