cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A130905 Expansion of e.g.f. exp(x^2 / 2) / (1 - x).

Original entry on oeis.org

1, 1, 3, 9, 39, 195, 1185, 8295, 66465, 598185, 5982795, 65810745, 789739335, 10266611355, 143732694105, 2155990411575, 34495848612225, 586429426407825, 10555729709800275, 200558864486205225, 4011177290378833575
Offset: 0

Views

Author

Karol A. Penson, Jun 08 2007

Keywords

Comments

a(n) is also the number of oriented simple graphs on n labeled vertices, such that each weakly connected component with 3 or more vertices is a directed cycle. - Austin Shapiro, Apr 17 2009
The Kn2p sums, p>=1, see A180662 for the definition of these sums, of triangle A193229 lead to this sequence. - Johannes W. Meijer, Jul 21 2011
Compare with A000266 with e.g.f. exp( -x^2 / 2) / (1 - x). - Michael Somos, Jul 24 2011
a(n) is the number of permutations of an n-set where each transposition (two cycle) is counted twice. That is, each transposition is an involution and is its own inverse, but if we imagine each transposition can be oriented in one of two ways, then a permutation with oriented transpositions is just a oriented simple graph. Conversely, an oriented simple graph with restrictions on connected components comes from a permutation with oriented transpositions. - Michael Somos, Jul 25 2011

Examples

			1 + x + 3*x^2 + 9*x^3 + 39*x^4 + 195*x^5 + 1185*x^6 + 8295*x^7 + ...
a(2) = 3 because there are 3 oriented simple graphs on two labeled vertices. a(3) = 9 because for oriented simple graphs on three labeled vertices there is 1 with no edges, 6 with one edge, 0 with two edges, and 2 with three edges which are directed cycles such that each weakly connected component with 3 or more vertices is a directed cycle.
		

Crossrefs

Programs

  • Maple
    A130905 := proc(n) local x: n!*coeftayl(exp(x^2/2)/(1-x), x=0, n) end: seq(A130905(n), n=0..25); # Johannes W. Meijer, Jul 21 2011
  • Mathematica
    CoefficientList[Series[E^(x^2/2)/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x^2 / 2 + x * O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 24 2011 */

Formula

E.g.f.: exp(x^2/2) / (1-x) = exp( x^2 / 2 + sum(k>=1, x^k/k ) ).
E.g.f.: 1/E(0) where E(k)=1 - x/(1 - x/(x + (2*k+2)/E(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 20 2012
D-finite with recurrence: a(n) = n*a(n-1) + (n-1)*a(n-2) - (n-2)*(n-1)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ n!*exp(1/2) . - Vaclav Kotesovec, Oct 20 2012
E.g.f.: E(0)/(1-x)^2, where E(k)= 1 - x/(1 - x/(x - 2*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 10 2013
a(n) = n! * Sum_{k=0..floor(n/2)} 1/(2^k * k!). - Seiichi Manyama, Feb 27 2024

Extensions

Superfluous leading 1 deleted by Johannes W. Meijer, Jul 21 2011

A000090 Expansion of e.g.f. exp((-x^3)/3)/(1-x).

Original entry on oeis.org

1, 1, 2, 4, 16, 80, 520, 3640, 29120, 259840, 2598400, 28582400, 343235200, 4462057600, 62468806400, 936987251200, 14991796019200, 254860532326400, 4587501779660800, 87162533813555200, 1743250676271104000, 36608259566534656000, 805381710463762432000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations in the symmetric group S_n whose cycle decomposition contains no 3-cycle.

Examples

			a(3) = 4 because the permutations in S_3 that contain no 3-cycles are the trivial permutation and the 3 transpositions.
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.

Crossrefs

Programs

  • Maple
    seq(coeff(convert(series(exp((-x^3)/3)/(1-x),x,50),polynom),x,i)*i!,i=0..30);# series expansion A000090:=n->n!*add((-1)^i/(i!*3^i),i=0..floor(n/3));seq(A000090(n),n=0..30); # formula (Pab Ter)
  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Exp[-x^3/3]/(1-x),{x,0,nn}],x]  (* Geoffrey Critzer, Oct 28 2012 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( -(x^3 / 3) + x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */

Formula

a(n) = n! * Sum_{i=0..floor(n/3)} (-1)^i / (i! * 3^i); a(n)/n! ~ Sum_{i >= 0} (-1)^i / (i! * 3^i) = e^(-1/3); a(n) ~ e^(-1/3) * n!; a(n) ~ e^(-1/3) * (n/e)^n * sqrt(2 * Pi * n). - Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001
a(n,k) = n!*floor(floor(n/k)!*k^floor(n/k)/exp(1/k) + 1/2)/(floor(n/k)!*k^floor(n/k)), here k=3, n>=0. - Simon Plouffe from old notes, 1993
E.g.f.: E(x) = exp(-x^3/3)/(1-x)=G(0)/((1-x)^2); G(k) = 1 - x/(1 - x^2/(x^2 + 3*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Feb 11 2012

Extensions

More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005
Entry improved by comments from Michael Somos, Jul 28 2009

A000138 Expansion of e.g.f. exp(-x^4/4)/(1-x).

Original entry on oeis.org

1, 1, 2, 6, 18, 90, 540, 3780, 31500, 283500, 2835000, 31185000, 372972600, 4848643800, 67881013200, 1018215198000, 16294848570000, 277012425690000, 4986223662420000, 94738249585980000, 1894745192712372000, 39789649046959812000, 875372279033115864000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations in the symmetric group S_n whose cycle decomposition contains no 4-cycle.

Examples

			a(4) = 18 because in S_4 the permutations with no 4-cycle are the complement of the six 4-cycles so a(4) = 4! - 6 = 18.
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.

Crossrefs

Programs

  • Mathematica
    nn=20;Range[0,nn]!CoefficientList[Series[Exp[-x^4/4]/(1-x),{x,0,nn}],x]  (* Geoffrey Critzer, Oct 28 2012 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( -(x^4/4) + x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */

Formula

a(n) = n! * Sum_{i=0..floor(n/4)} (-1)^i / (i! * 4^i); a(n)/n! ~ Sum_{i >= 0} (-1)^i / (i! * 4^i) = e^(-1/4); a(n) ~ e^(-1/4) * n!; a(n) ~ e^(-1/4) * (n/e)^n * sqrt(2*Pi*n). - Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001
a(n,k) = n!*floor(floor(n/k)!*k^floor(n/k)/exp(1/k) + 1/2)/(floor(n/k)!*k^floor(n/k)), here k=4, n>=0. Simon Plouffe, from old notes, 1993
E.g.f.: exp(-x^4/4)/(1-x) = 1/G(0); G(k) = 1 - x/(1 - (x^3)/(x^3 - 4*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Feb 28 2012

Extensions

Entry improved by comments from Michael Somos, Jul 28 2009
Name corrected by Joerg Arndt, May 27 2011

A113235 Number of partitions of {1,..,n} into any number of lists of size not equal to 2, where a list means an ordered subset, cf. A000262.

Original entry on oeis.org

1, 1, 1, 7, 49, 301, 2281, 21211, 220417, 2528569, 32014801, 442974511, 6638604721, 107089487077, 1849731389689, 34051409587651, 665366551059841, 13751213558077681, 299644435399909537, 6864906328749052759, 164941239260973870001, 4146673091958686331421
Offset: 0

Views

Author

Karol A. Penson, Oct 19 2005

Keywords

Crossrefs

This sequence, A113236 and A113237 all describe the same type of mathematical structure: lists with some restrictions.

Programs

  • Magma
    I:=[1, 1, 7, 49]; [1] cat [n le 4 select I[n] else (2*n-1)*Self(n -1) - (n-1)*n*Self(n-2) +4*(n-1)*(n-2)*Self(n-3) -2*(n-1)*(n-2)*(n-3)* Self(n-4): n in [1..30]]; // G. C. Greubel, May 16 2018
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*j!, j=[1, $3..n]))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 10 2016
  • Mathematica
    f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 2*k, -1, -1]/k!, {k, 0, Floor[n/2]}]; Table[ f[n], {n, 0, 19}]
    Range[0, 19]!*CoefficientList[ Series[ Exp[x*(1 - x + x^2)/(1 - x)], {x, 0, 19}], x] (* Robert G. Wilson v, Oct 21 2005 *)
  • PARI
    m=30; v=concat([1,1,7,49], vector(m-4)); for(n=5, m, v[n]=(2*n-1)*v[n-1]-(n-1)*n*v[n-2]+4*(n-1)*(n-2)*v[n-3]-2*(n-1)*(n-2)*(n-3)*v[n -4]); concat([1], v) \\ G. C. Greubel, May 16 2018
    
  • PARI
    x='x+O('x^99); Vec(serlaplace(exp(x*(1-x+x^2)/(1-x)))) \\ Altug Alkan, May 17 2018
    

Formula

Expression as a sum involving generalized Laguerre polynomials, in Mathematica notation: a(n)=n!*Sum[(-1)^k*LaguerreL[n - 2*k, -1, -1]/k!, {k, 0, Floor[n/2]}], n=0, 1... .
E.g.f.: exp(x*(1-x+x^2)/(1-x)).
From Vaclav Kotesovec, Nov 13 2017: (Start)
a(n) = (2*n - 1)*a(n-1) - (n-1)*n*a(n-2) + 4*(n-2)*(n-1)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ exp(-3/2 + 2*sqrt(n) - n) * n^(n-1/4) / sqrt(2) * (1 + 91/(48*sqrt(n))).
(End)

A060725 E.g.f.: exp(-(x^5/5))/(1-x).

Original entry on oeis.org

1, 1, 2, 6, 24, 96, 576, 4032, 32256, 290304, 2975616, 32731776, 392781312, 5106157056, 71486198784, 1070549415936, 17128790654976, 291189441134592, 5241409940422656, 99586788868030464, 1991897970827821056, 41829857387384242176, 920256862522453327872
Offset: 0

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001

Keywords

Comments

a(n) is the number of permutations in the symmetric group S_n whose cycle decomposition contains no 5-cycle.

Examples

			a(5) = 96 because in S_5 the permutations with no 5-cycle are the complement of the 24 5-cycles so a(5) = 5! - 24 = 96.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do printf(`%d,`, n! * sum(( (-1)^i /(i! * 5^i)), i=0..floor(n/5))) od:
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[-(x^5/5)]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 24 2019 *)
  • PARI
    { for (n=0, 100, write("b060725.txt", n, " ", n! * sum(i=0, n\5, (-1)^i / (i! * 5^i))); ) } \\ Harry J. Smith, Jul 10 2009
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( -(x^5 / 5) + x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */
    
  • PARI
    { A060725_list(numterms) = Vec(serlaplace(exp(-x^5/5 + O(x^numterms))/(1-x))); } /* Eric M. Schmidt, Aug 22 2012 */

Formula

The formula for a(n) is: a(n) = n! * sum i=0 ... [ n/5 ]( (-1)^i /(i! * 5^i)) by this formula we have as n -> infinity: a(n)/n! ~ sum i >= 0 (-1)^i /(i! * 5^i) = e^(-1/5) or a(n) ~ e^(-1/5) * n! and using Stirling's formula in A000142: a(n) ~ e^(-1/5) * (n/e)^n * sqrt(2 * Pi * n).
a(n,k) = n!*floor(floor(n/k)!*k^floor(n/k)/exp(1/k) + 1/2)/(floor(n/k)! * k^floor(n/k)), k=5, n>=0. - Simon Plouffe, Feb 18 2011

Extensions

More terms from James Sellers, Apr 24 2001
Entry improved by comments from Michael Somos, Jul 28 2009

A274760 The multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 1, 10, 478, 68248, 21809656, 13107532816, 13244650672240, 20818058883902848, 48069880140604832128, 156044927762422185270016, 687740710497308621254625536, 4000181720339888446834235653120, 29991260979682976913756629498334208
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The multinomial transform [MNL] transforms an input sequence b(n) into the output sequence a(n). Given the fact that the structure of the a(n) formulas, see the examples, lead to the multinomial coefficients A036039 the MNL transform seems to be an appropriate name for this transform. The multinomial transform is related to the exponential transform, see A274804 and the third formula. For the inverse multinomial transform [IML] see A274844.
To preserve the identity IML[MNL[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A036039 appear.
We observe that a(0) = 1 and that this term provides no information about any value of b(n), this notwithstanding we will start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the multinomial transform of a sequence. The first program uses the first formula which was found by Paul D. Hanna, see A158876, and Vladimir Kruchinin, see A215915. The second program uses properties of the e.g.f., see the sequences A158876, A213507, A244430 and A274539 and the third formula. The third program uses information about the inverse multinomial transform, see A274844.
Some MNL transform pairs are, n >= 1: A000045(n) and A244430(n-1); A000045(n+1) and A213527(n-1); A000108(n) and A213507(n-1); A000108(n-1) and A243953(n-1); A000142(n) and A158876(n-1); A000203(n) and A053529(n-1); A000110(n) and A274539(n-1); A000041(n) and A215915(n-1); A000035(n-1) and A177145(n-1); A179184(n) and A038205(n-1); A267936(n) and A000266(n-1); A267871(n) and A000090(n-1); A193356(n) and A088009(n-1).

Examples

			Some a(n) formulas, see A036039:
  a(0) = 1
  a(1) = 1*x(1)
  a(2) = 1*x(2) + 1*x(1)^2
  a(3) = 2*x(3) + 3*x(1)*x(2) + 1*x(1)^3
  a(4) = 6*x(4) + 8*x(1)*x(3) + 3*x(2)^2 + 6*x(1)^2*x(2) + 1*x(1)^4
  a(5) = 24*x(5) + 30*x(1)*x(4) + 20*x(2)*x(3) + 20*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 10*x(1)^3*x(2) + 1*x(1)^5
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:= 13: b := proc(n): (doublefactorial(2*n-1))^2 end: a:= proc(n) option remember: if n=0 then 1 else add(((n-1)!/(n-k)!) * b(k) * a(n-k), k=1..n) fi: end: seq(a(n), n = 0..nmax); # End first MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := exp(add(b(n)*x^n/n, n = 1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n = 0..nmax); # End second MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(log(1+add(s(n)*x^n/n!, n=1..nmax)), x, nmax+1): d := proc(n): n*coeff(f, x, n) end: a(0) := 1: a(1) := b(1): s(1) := b(1): for n from 2 to nmax do s(n) := solve(d(n)-b(n), s(n)): a(n):=s(n): od: seq(a(n), n=0..nmax); # End third MNL program.
  • Mathematica
    b[n_] := (2*n - 1)!!^2;
    a[0] = 1; a[n_] := a[n] = Sum[((n-1)!/(n-k)!)*b[k]*a[n-k], {k, 1, n}];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 17 2017 *)

Formula

a(n) = Sum_{k=1..n} ((n-1)!/(n-k)!)*b(k)*a(n-k), n >= 1 and a(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = n!*P(n), with P(n) = (1/n)*(Sum_{k=0..n-1} b(n-k)*P(k)), n >= 1 and P(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n) with b(n) = A001818(n) = ((2*n-1)!!)^2.
denom(a(n)/2^n) = A001316(n); numer(a(n)/2^n) = [1, 1, 5, 239, 8531, 2726207, ...].

A060726 For n >= 1, a(n) is the number of permutations in the symmetric group S_n such that their cycle decomposition contains no 6-cycle.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 600, 4200, 33600, 302400, 3024000, 33264000, 405820800, 5275670400, 73859385600, 1107890784000, 17726252544000, 301346293248000, 5419293175296000, 102966570330624000, 2059331406612480000
Offset: 0

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001

Keywords

Comments

This is the expansion of exp ((-x^6)/6) /(1-x).

Examples

			a(6) = 600 because in S_6 the permutations with no 6-cycle are the complement of the 120 6-cycles so a(6) = 6! - 120 = 600.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do printf(`%d,`, n! * sum(( (-1)^i /(i! * 6^i)), i=0..floor(n/6))) od:
  • PARI
    a(n)={n! * sum(i=0, n\6, (-1)^i / (i! * 6^i))} \\ Harry J. Smith, Jul 10 2009

Formula

The formula for a(n) is: a(n) = n! * Sum_{i=0..floor(n/6)} ((-1)^i /(i! * 6^i)) by this formula we have as n -> infinity: a(n)/n! ~ Sum_{i>= 0} (-1)^i /(i! * 6^i) = e^(-1/6) or a(n) ~ e^(-1/6) * n! and using Stirling's formula in A000142: a(n) ~ e^(-1/6) * (n/e)^n * sqrt(2 * Pi * n)
a(n,k) = n!*floor(floor(n/k)!*k^floor(n/k)/exp(1/k) + 1/2)/(floor(n/k)!*k^floor(n/k)), k=6, n >= 0. - Simon Plouffe, Feb 18 2011

Extensions

More terms from James Sellers, Apr 24 2001

A114320 Triangle T(n,k) = number of permutations of n elements with k 2-cycles.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 15, 6, 3, 75, 30, 15, 435, 225, 45, 15, 3045, 1575, 315, 105, 24465, 12180, 3150, 420, 105, 220185, 109620, 28350, 3780, 945, 2200905, 1100925, 274050, 47250, 4725, 945, 24209955, 12110175, 3014550, 519750, 51975, 10395, 290529855
Offset: 0

Views

Author

Vladeta Jovovic, Feb 05 2006

Keywords

Comments

Row n has 1+floor(n/2) terms. Row sums yield the factorials (A000142). Sum(k*T(n,k),k>0)=n!/2 for n>=2. - Emeric Deutsch, Feb 17 2006

Examples

			T(3,1) = 3 because we have (1)(23), (12)(3) and (13)(2).
Triangle begins:
    1;
    1;
    1,   1;
    3,   3;
   15,   6,   3;
   75,  30,  15;
  435, 225,  45,  15;
  ...
		

Crossrefs

Programs

  • Maple
    G:= exp((y-1)*x^2/2)/(1-x): Gser:= simplify(series(G,x=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:= n!*coeff(Gser,x^n) od: for n from 0 to 12 do seq(coeff(y*P[n], y^j), j=1..1+floor(n/2)) od;  # yields sequence in triangular form - Emeric Deutsch, Feb 17 2006
  • Mathematica
    d = Exp[-x^2/2!]/(1 - x);f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Transpose[Table[Range[0, 10]!CoefficientList[Series[x^(2 k)/(2^k k!) d, {x, 0, 10}], x], {k, 0, 5}]]]]  (* Geoffrey Critzer, Nov 29 2011 *)

Formula

E.g.f.: exp((y-1)*x^2/2)/(1-x). More generally, e.g.f. for number of permutations of n elements with k m-cycles is exp((y-1)*x^m/m)/(1-x).
T(n,k) = n!/(2^k*k!) * Sum_{j=0..floor(n/2)-k} (-1/2)^j/j!. - Alois P. Heinz, Nov 30 2011

Extensions

More terms from Emeric Deutsch, Feb 17 2006

A137482 Number of permutations of n objects such that no two-element subset is preserved.

Original entry on oeis.org

1, 1, 0, 2, 14, 54, 304, 2260, 18108, 161756, 1618496, 17815896, 213767080, 2778833992, 38904145344, 583563781424, 9337011390224, 158729175524880, 2857125341582848, 54285381652008736, 1085707629235539936, 22799860214350346336, 501596924799005576960
Offset: 0

Views

Author

Jono Henshaw (jjono(AT)hotmail.com), Apr 22 2008, corrected Apr 30 2008

Keywords

Comments

In other words, there are no two objects which the permutation leaves fixed and no two objects that the permutation swaps.
The limit as n -> infinity of a(n)/n! = 2/exp(3/2) or approximately 0.4462603203. - Les Reid, Jun 04 2012

Examples

			a(3)=2 because we have 312 and 231.
		

Crossrefs

Programs

  • Maple
    g:=(1+x)*exp(-x)*exp(-(1/2)*x^2)/(1-x): gser:=series(g,x=0,25): seq(factorial(n)*coeff(gser,x,n),n=0..20);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, (n+1)*(2-n)/2,
          (n-1)*a(n-1)-a(n-2)+(n-2)*n*a(n-3))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 19 2019
  • Mathematica
    With[{nn=20},CoefficientList[Series[((1+x)Exp[-x]Exp[-x^2/2])/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 17 2013 *)

Formula

E.g.f.: (1+x)*exp(-x)*exp(-x^2/2)/(1-x).
a(n) = (n-1)*a(n-1) - a(n-2) + (n-2)*n*a(n-3) for n > 2, a(n) = (n+1)*(2-n)/2 for n < 3. - Alois P. Heinz, Feb 19 2019

A060727 For n >= 1 a(n) is the number of permutations in the symmetric group S_n such that their cycle decomposition contains no 7-cycle.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 4320, 34560, 311040, 3110400, 34214400, 410572800, 5337446400, 75613824000, 1134207360000, 18147317760000, 308504401920000, 5553079234560000, 105508505456640000, 2110170109132800000, 44288746761093120000, 974352428744048640000
Offset: 0

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001

Keywords

Comments

This is the expansion of exp ((-x^7)/7)/(1-x).

Examples

			a(7) = 4320 because in S_7 the permutations with no 7-cycle are the complement of the 720 7-cycles so a(7) = 7! - 720 = 4320.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.

Crossrefs

Programs

  • Maple
    for n from 0 to 30 do printf(`%d,`, n! * sum(( (-1)^i /(i! * 7^i)), i=0..floor(n/7))) od:
  • PARI
    { for (n=0, 100, write("b060727.txt", n, " ", n! * sum(i=0, n\7, (-1)^i / (i! * 7^i))); ) } \\ Harry J. Smith, Jul 10 2009

Formula

The formula for a(n) is: a(n) = n! * sum i=0 ... [ n/7 ]( (-1)^i /(i! * 7^i)) by this formula we have as n -> infinity: a(n)/n! ~ sum i >= 0 (-1)^i /(i! * 7^i) = e^(-1/7) or a(n) ~ e^(-1/7) * n! and using Stirling's formula in A000142: a(n) ~ e^(-1/7) * (n/e)^n * sqrt(2 * Pi * n)
a(n,k) = n!*floor(floor(n/k)!*k^floor(n/k)/exp(1/k) + 1/2)/(floor(n/k)!*k^floor(n/k)), k=7, n>=0. - Simon Plouffe, Feb 18 2011

Extensions

More terms from James Sellers, Apr 24 2001
Showing 1-10 of 18 results. Next