A000266
Expansion of e.g.f. exp(-x^2/2) / (1-x).
Original entry on oeis.org
1, 1, 1, 3, 15, 75, 435, 3045, 24465, 220185, 2200905, 24209955, 290529855, 3776888115, 52876298475, 793144477125, 12690313661025, 215735332237425, 3883235945814225, 73781482970470275, 1475629660064134575, 30988222861346826075, 681740902935880863075
Offset: 0
a(3) = 3 because the permutations in S_3 that contain no transpositions are the trivial permutation and the two 3-cycles.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
-
G:=exp(-z^2/2)/(1-z): Gser:=series(G,z=0,26): for n from 0 to 25 do a(n):=n!*coeff(Gser,z,n): end do: seq(a(n), n=0..20); # Paul Weisenhorn, May 29 2010
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*(j-1)!*binomial(n-1, j-1), j=[1, $3..n]))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 12 2016
-
a=Log[1/(1-x)]-x^2/2; Range[0,20]! CoefficientList[Series[Exp[a], {x,0,20}], x] (* Geoffrey Critzer, Nov 29 2011 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp(-(x^2/2)+x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */
A000138
Expansion of e.g.f. exp(-x^4/4)/(1-x).
Original entry on oeis.org
1, 1, 2, 6, 18, 90, 540, 3780, 31500, 283500, 2835000, 31185000, 372972600, 4848643800, 67881013200, 1018215198000, 16294848570000, 277012425690000, 4986223662420000, 94738249585980000, 1894745192712372000, 39789649046959812000, 875372279033115864000
Offset: 0
a(4) = 18 because in S_4 the permutations with no 4-cycle are the complement of the six 4-cycles so a(4) = 4! - 6 = 18.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
-
nn=20;Range[0,nn]!CoefficientList[Series[Exp[-x^4/4]/(1-x),{x,0,nn}],x] (* Geoffrey Critzer, Oct 28 2012 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( -(x^4/4) + x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */
A060725
E.g.f.: exp(-(x^5/5))/(1-x).
Original entry on oeis.org
1, 1, 2, 6, 24, 96, 576, 4032, 32256, 290304, 2975616, 32731776, 392781312, 5106157056, 71486198784, 1070549415936, 17128790654976, 291189441134592, 5241409940422656, 99586788868030464, 1991897970827821056, 41829857387384242176, 920256862522453327872
Offset: 0
Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001
a(5) = 96 because in S_5 the permutations with no 5-cycle are the complement of the 24 5-cycles so a(5) = 5! - 24 = 96.
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
-
for n from 0 to 30 do printf(`%d,`, n! * sum(( (-1)^i /(i! * 5^i)), i=0..floor(n/5))) od:
-
With[{nn=30},CoefficientList[Series[Exp[-(x^5/5)]/(1-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 24 2019 *)
-
{ for (n=0, 100, write("b060725.txt", n, " ", n! * sum(i=0, n\5, (-1)^i / (i! * 5^i))); ) } \\ Harry J. Smith, Jul 10 2009
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( -(x^5 / 5) + x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */
-
{ A060725_list(numterms) = Vec(serlaplace(exp(-x^5/5 + O(x^numterms))/(1-x))); } /* Eric M. Schmidt, Aug 22 2012 */
A274760
The multinomial transform of A001818(n) = ((2*n-1)!!)^2.
Original entry on oeis.org
1, 1, 10, 478, 68248, 21809656, 13107532816, 13244650672240, 20818058883902848, 48069880140604832128, 156044927762422185270016, 687740710497308621254625536, 4000181720339888446834235653120, 29991260979682976913756629498334208
Offset: 0
Some a(n) formulas, see A036039:
a(0) = 1
a(1) = 1*x(1)
a(2) = 1*x(2) + 1*x(1)^2
a(3) = 2*x(3) + 3*x(1)*x(2) + 1*x(1)^3
a(4) = 6*x(4) + 8*x(1)*x(3) + 3*x(2)^2 + 6*x(1)^2*x(2) + 1*x(1)^4
a(5) = 24*x(5) + 30*x(1)*x(4) + 20*x(2)*x(3) + 20*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 10*x(1)^3*x(2) + 1*x(1)^5
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, arXiv:math/0205301 [math.CO], 2002; Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
-
nmax:= 13: b := proc(n): (doublefactorial(2*n-1))^2 end: a:= proc(n) option remember: if n=0 then 1 else add(((n-1)!/(n-k)!) * b(k) * a(n-k), k=1..n) fi: end: seq(a(n), n = 0..nmax); # End first MNL program.
nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := exp(add(b(n)*x^n/n, n = 1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n = 0..nmax); # End second MNL program.
nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(log(1+add(s(n)*x^n/n!, n=1..nmax)), x, nmax+1): d := proc(n): n*coeff(f, x, n) end: a(0) := 1: a(1) := b(1): s(1) := b(1): for n from 2 to nmax do s(n) := solve(d(n)-b(n), s(n)): a(n):=s(n): od: seq(a(n), n=0..nmax); # End third MNL program.
-
b[n_] := (2*n - 1)!!^2;
a[0] = 1; a[n_] := a[n] = Sum[((n-1)!/(n-k)!)*b[k]*a[n-k], {k, 1, n}];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 17 2017 *)
A060726
For n >= 1, a(n) is the number of permutations in the symmetric group S_n such that their cycle decomposition contains no 6-cycle.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 600, 4200, 33600, 302400, 3024000, 33264000, 405820800, 5275670400, 73859385600, 1107890784000, 17726252544000, 301346293248000, 5419293175296000, 102966570330624000, 2059331406612480000
Offset: 0
Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001
a(6) = 600 because in S_6 the permutations with no 6-cycle are the complement of the 120 6-cycles so a(6) = 6! - 120 = 600.
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
-
for n from 0 to 30 do printf(`%d,`, n! * sum(( (-1)^i /(i! * 6^i)), i=0..floor(n/6))) od:
-
a(n)={n! * sum(i=0, n\6, (-1)^i / (i! * 6^i))} \\ Harry J. Smith, Jul 10 2009
A114320
Triangle T(n,k) = number of permutations of n elements with k 2-cycles.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 15, 6, 3, 75, 30, 15, 435, 225, 45, 15, 3045, 1575, 315, 105, 24465, 12180, 3150, 420, 105, 220185, 109620, 28350, 3780, 945, 2200905, 1100925, 274050, 47250, 4725, 945, 24209955, 12110175, 3014550, 519750, 51975, 10395, 290529855
Offset: 0
T(3,1) = 3 because we have (1)(23), (12)(3) and (13)(2).
Triangle begins:
1;
1;
1, 1;
3, 3;
15, 6, 3;
75, 30, 15;
435, 225, 45, 15;
...
-
G:= exp((y-1)*x^2/2)/(1-x): Gser:= simplify(series(G,x=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:= n!*coeff(Gser,x^n) od: for n from 0 to 12 do seq(coeff(y*P[n], y^j), j=1..1+floor(n/2)) od; # yields sequence in triangular form - Emeric Deutsch, Feb 17 2006
-
d = Exp[-x^2/2!]/(1 - x);f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Transpose[Table[Range[0, 10]!CoefficientList[Series[x^(2 k)/(2^k k!) d, {x, 0, 10}], x], {k, 0, 5}]]]] (* Geoffrey Critzer, Nov 29 2011 *)
A060727
For n >= 1 a(n) is the number of permutations in the symmetric group S_n such that their cycle decomposition contains no 7-cycle.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4320, 34560, 311040, 3110400, 34214400, 410572800, 5337446400, 75613824000, 1134207360000, 18147317760000, 308504401920000, 5553079234560000, 105508505456640000, 2110170109132800000, 44288746761093120000, 974352428744048640000
Offset: 0
Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001
a(7) = 4320 because in S_7 the permutations with no 7-cycle are the complement of the 720 7-cycles so a(7) = 7! - 720 = 4320.
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
-
for n from 0 to 30 do printf(`%d,`, n! * sum(( (-1)^i /(i! * 7^i)), i=0..floor(n/7))) od:
-
{ for (n=0, 100, write("b060727.txt", n, " ", n! * sum(i=0, n\7, (-1)^i / (i! * 7^i))); ) } \\ Harry J. Smith, Jul 10 2009
A102736
Number of permutations of n elements without cycles whose length is a multiple of 3.
Original entry on oeis.org
1, 1, 2, 4, 16, 80, 400, 2800, 22400, 179200, 1792000, 19712000, 216832000, 2818816000, 39463424000, 552487936000, 8839806976000, 150276718592000, 2554704216064000, 48539380105216000, 970787602104320000, 19415752042086400000, 427146544925900800000, 9824370533295718400000, 225960522265801523200000, 5649013056645038080000000, 146874339472770990080000000, 3818732826292045742080000000
Offset: 0
G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 400*x^6 + 2800*x^7 + ...
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
irem(j, 3)=0, 0, a(n-j)*(j-1)!*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..27); # Alois P. Heinz, Jul 31 2017
-
nn=21;a=Sum[x^n/n,{n,3,nn,3}];Range[0,nn]!CoefficientList[Series[Exp[Log[1/(1-x)]-a],{x,0,nn}],x] (* Geoffrey Critzer, Nov 11 2012 *)
a[ n_] := If[ n < 0, 0, n! With[{m = Quotient[n, 3]}, (-1)^m Binomial[-2/3, m]]]; (* Michael Somos, Aug 05 2016 *)
-
{a(n) = my(m); if( n<0, 0, m = n\3; n! * (-1)^m * binomial(-2/3, m))}; /* Michael Somos, Aug 05 2016 */
A122974
Triangle T(n,k), the number of permutations on n elements that have no cycles of length k.
Original entry on oeis.org
0, 1, 1, 2, 3, 4, 9, 15, 16, 18, 44, 75, 80, 90, 96, 265, 435, 520, 540, 576, 600, 1854, 3045, 3640, 3780, 4032, 4200, 4320, 14833, 24465, 29120, 31500, 32256, 33600, 34560, 35280, 133496, 220185, 259840, 283500, 290304, 302400, 311040, 317520, 322560
Offset: 1
T(3,2)=3 since there are exactly 3 permutations of 1,2,3 that have no cycles of length 2, namely, (1)(2)(3),(1 2 3) and (2 1 3).
Triangle T(n,k) begins:
0;
1, 1;
2, 3, 4;
9, 15, 16, 18;
44, 75, 80, 90, 96;
265, 435, 520, 540, 576, 600;
1854, 3045, 3640, 3780, 4032, 4200, 4320;
14833, 24465, 29120, 31500, 32256, 33600, 34560, 35280;
...
-
seq((round((2*n)^.5))!*sum((-1/(n-binomial(round((2*n)^.5),2)))^r/r!,r=0..floor(round((2*n)^.5)/(n-binomial(round((2*n)^.5),2)))),n=1..66);
# second Maple program:
T:= proc(n, k) option remember; `if`(n=0, 1, add(`if`(j=k, 0,
T(n-j, k)*binomial(n-1, j-1)*(j-1)!), j=1..n))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Nov 24 2019
-
T[n_, k_] := T[n, k] = If[n==0, 1, Sum[If[j==k, 0, T[n - j, k] Binomial[n - 1, j - 1] (j - 1)!], {j, 1, n}]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 08 2019, after Alois P. Heinz *)
A319364
Expansion of e.g.f. exp(x^3/3)/(1 - x).
Original entry on oeis.org
1, 1, 2, 8, 32, 160, 1000, 7000, 56000, 506240, 5062400, 55686400, 668483200, 8690281600, 121663942400, 1825003980800, 29200063692800, 496401082777600, 8935231687782400, 169769402067865600, 3395388041357312000, 71303153503662080000, 1568669377080565760000, 36079395672853012480000
Offset: 0
-
seq(n!*coeff(series(exp(x^3/3)/(1 - x),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 09 2019
-
nmax = 23; CoefficientList[Series[Exp[x^3/3]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
-
my(x='x+O('x^30)); Vec(serlaplace(exp(x^3/3)/(1 - x))) \\ Michel Marcus, Dec 17 2020
Showing 1-10 of 11 results.
Comments