A027616
Number of permutations of n elements containing a 2-cycle.
Original entry on oeis.org
0, 0, 1, 3, 9, 45, 285, 1995, 15855, 142695, 1427895, 15706845, 188471745, 2450132685, 34301992725, 514529890875, 8232476226975, 139952095858575, 2519137759913775, 47863617438361725, 957272348112505425, 20102719310362613925, 442259824841726816925, 10171975971359716789275
Offset: 0
Joe Keane (jgk(AT)jgk.org)
-
A027616:= func< n | Factorial(n)*(1- (&+[(-1/2)^j/Factorial(j): j in [0..Floor(n/2)]]) ) >;
[A027616(n): n in [0..30]]; // G. C. Greubel, Aug 05 2022
-
S:= series((1-exp(-x^2/2))/(1-x), x, 101):
seq(coeff(S,x,j)*j!,j=0..100); # Robert Israel, May 12 2016
-
nn=30; Table[n!,{n,0,nn}]-Range[0,nn]!CoefficientList[Series[Exp[-x^2/2]/(1-x),{x,0,nn}],x] (* Geoffrey Critzer, Oct 20 2012 *)
-
a(n) = n! * (1 - sum(k=0,floor(n/2), (-1)^k / (2^k * k!) ) );
/* Joerg Arndt, Oct 20 2012 */
-
N=33; x='x+O('x^N);
v=Vec( 'a0 + serlaplace( (1-exp(-x^2/2))/(1-x) ) );
v[1]-='a0; v
/* Joerg Arndt, Oct 20 2012 */
-
def A027616(n): return factorial(n)*(1-sum((-1/2)^k/factorial(k) for k in (0..(n//2))))
[A027616(n) for n in (0..30)] # G. C. Greubel, Aug 05 2022
A162974
Triangle read by rows: T(n,k) is the number of derangements of {1,2,...,n} having k cycles of length 2 (0 <= k <= floor(n/2)).
Original entry on oeis.org
1, 0, 0, 1, 2, 0, 6, 0, 3, 24, 20, 0, 160, 90, 0, 15, 1140, 504, 210, 0, 8988, 4480, 1260, 0, 105, 80864, 41040, 9072, 2520, 0, 809856, 404460, 100800, 18900, 0, 945, 8907480, 4447520, 1128600, 166320, 34650, 0, 106877320, 53450496, 13347180, 2217600
Offset: 0
T(4,2)=3 because we have (12)(34), (13)(24), and (14)(23).
Triangle starts:
1;
0;
0, 1;
2, 0;
6, 0, 3;
24, 20, 0;
160, 90, 0, 15;
...
-
G := exp((1/2)*z*(t*z-z-2))/(1-z): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 13 do seq(coeff(P[n], t, j), j = 0 .. floor((1/2)*n)) end do;
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add((j-1)!*
`if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=2..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
seq(T(n), n=0..14); # Alois P. Heinz, Jan 27 2022
-
b[n_] := b[n] = Expand[If[n == 0, 1, Sum[(j - 1)!*If[j == 2, x, 1]*b[n - j]*Binomial[n - 1, j - 1], {j, 2, n}]]];
T[n_] := With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Sep 17 2024, after Alois P. Heinz *)
A186526
Number T(n,k) of permutations on n elements with exactly k 3-cycles; triangle read by rows.
Original entry on oeis.org
1, 1, 2, 4, 2, 16, 8, 80, 40, 520, 160, 40, 3640, 1120, 280, 29120, 8960, 2240, 259840, 87360, 13440, 2240, 2598400, 873600, 134400, 22400, 28582400, 9609600, 1478400, 246400, 343235200, 114329600, 19219200, 1971200, 246400, 4462057600, 1486284800, 249849600, 25625600, 3203200, 62468806400, 20807987200, 3497894400, 358758400, 44844800, 936987251200, 312344032000, 52019968000, 5829824000, 448448000, 44844800
Offset: 0
For n=4 and k=1, T(4,1)=8 since there are 8 permutations on 4 elements with 1 cycle of length 3, namely, (abc)(d), (acb)(d), (abd)(c), (adb)(c), (acd)(b), (adc)(b), (bcd)(a), and (bdc)(a).
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 4, 2;
: 16, 8;
: 80, 40;
: 520, 160, 40;
: 3640, 1120, 280;
: 29120, 8960, 2240;
: ...
- Arratia, R. and Tavaré, S. (1992). The cycle structure of random permutations. Ann. Probab. 20 1567-1591.
-
seq(seq(n!*(1/3)^x/x!*sum((-1/3)^j/j!,j=0..(floor(n/3)-x)),x=0..floor(n/3)),n=0..15);
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
`if`(i=3, x, 1)*binomial(n-1, i-1)*(i-1)!, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Sep 25 2016
-
nn = 8; Range[0, nn]! CoefficientList[
Series[Exp[x^3/3 (y - 1)]/(1 - x), {x, 0, nn}], {x, y}] // Grid
A342381
Triangle read by rows: T(n,k) is the number of symmetries of the n-dimensional hypercube that fix exactly 2*k facets; n,k >= 0.
Original entry on oeis.org
1, 1, 1, 5, 2, 1, 29, 15, 3, 1, 233, 116, 30, 4, 1, 2329, 1165, 290, 50, 5, 1, 27949, 13974, 3495, 580, 75, 6, 1, 391285, 195643, 48909, 8155, 1015, 105, 7, 1, 6260561, 3130280, 782572, 130424, 16310, 1624, 140, 8, 1, 112690097, 56345049, 14086260, 2347716, 293454, 29358, 2436, 180, 9, 1
Offset: 0
Table begins:
n\k | 0 1 2 3 4 5 6 7 8 9
----+--------------------------------------------------------------
0 | 1
1 | 1 1
2 | 5 2 1
3 | 29 15 3 1
4 | 233 116 30 4 1
5 | 2329 1165 290 50 5 1
6 | 27949 13974 3495 580 75 6 1
7 | 391285 195643 48909 8155 1015 105 7 1
8 | 6260561 3130280 782572 130424 16310 1624 140 8 1
9 | 112690097 56345049 14086260 2347716 293454 29358 2436 180 9 1
For the cube in n=2 dimensions (the square) there is
T(2,2) = 1 symmetry that fixes all 2*2 = 4 sides, namely the identity:
2
+---+
3| |1;
+---+
4
T(2,1) = 2 symmetries that fix 2*1 = 2 sides, namely horizonal/vertical flips:
4 2
+---+ +---+
3| |1 and 1| |3;
+---+ +---+
2 4
and T(2,0) = 5 symmetries that fix 2*0 = 0 sides, namely rotations or diagonal flips:
1 4 3 3 1
+---+ +---+ +---+ +---+ +---+
2| |4, 1| |3, 4| |2, 2| |4, and 4| |2.
+---+ +---+ +---+ +---+ +---+
3 2 1 1 3
-
f(n) = sum(k=0, n, (-1)^(n+k)*binomial(n, k)*k!*2^k); \\ A000354
T(n, k) = f(n-k)*binomial(n, k); \\ Michel Marcus, Mar 10 2021
A237928
Triangular array read by rows. T(n,k) is the number of n-permutations with k cycles of length one or k cycles of length two, n>=0,0<=k<=n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 18, 14, 9, 0, 1, 95, 75, 35, 10, 0, 1, 540, 369, 135, 55, 15, 0, 1, 3759, 2800, 1239, 420, 70, 21, 0, 1, 30310, 22980, 10570, 2884, 735, 112, 28, 0, 1, 272817, 202797, 87534, 24780, 6489, 1134, 168, 36, 0, 1
Offset: 0
1,
1, 1,
2, 1, 1,
3, 3, 0, 1,
18, 14, 9, 0, 1,
95, 75, 35, 10, 0, 1,
540, 369, 135, 55, 15, 0, 1,
3759, 2800, 1239, 420, 70, 21, 0, 1
T(3,0)=3 because we have: (1)(2)(3);(1,2,3);(2,1,3)
-
nn=10;c=Sum[y^n x^(3n)/(2^n*n!^2),{n,0,nn}];Table[Take[(Range[0,nn]!CoefficientList[Series[Exp[y x]Exp[-x]/(1-x)+Exp[y x^2/2]Exp[-x^2/2]/(1-x)-c Exp[-x-x^2/2!]/(1-x),{x,0,nn}],{x,y}])[[n]],n],{n,1,nn}]//Grid
Showing 1-5 of 5 results.
Comments