A000090
Expansion of e.g.f. exp((-x^3)/3)/(1-x).
Original entry on oeis.org
1, 1, 2, 4, 16, 80, 520, 3640, 29120, 259840, 2598400, 28582400, 343235200, 4462057600, 62468806400, 936987251200, 14991796019200, 254860532326400, 4587501779660800, 87162533813555200, 1743250676271104000, 36608259566534656000, 805381710463762432000
Offset: 0
a(3) = 4 because the permutations in S_3 that contain no 3-cycles are the trivial permutation and the 3 transpositions.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
-
seq(coeff(convert(series(exp((-x^3)/3)/(1-x),x,50),polynom),x,i)*i!,i=0..30);# series expansion A000090:=n->n!*add((-1)^i/(i!*3^i),i=0..floor(n/3));seq(A000090(n),n=0..30); # formula (Pab Ter)
-
nn=20;Range[0,nn]!CoefficientList[Series[Exp[-x^3/3]/(1-x),{x,0,nn}],x] (* Geoffrey Critzer, Oct 28 2012 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( -(x^3 / 3) + x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005
A000138
Expansion of e.g.f. exp(-x^4/4)/(1-x).
Original entry on oeis.org
1, 1, 2, 6, 18, 90, 540, 3780, 31500, 283500, 2835000, 31185000, 372972600, 4848643800, 67881013200, 1018215198000, 16294848570000, 277012425690000, 4986223662420000, 94738249585980000, 1894745192712372000, 39789649046959812000, 875372279033115864000
Offset: 0
a(4) = 18 because in S_4 the permutations with no 4-cycle are the complement of the six 4-cycles so a(4) = 4! - 6 = 18.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
-
nn=20;Range[0,nn]!CoefficientList[Series[Exp[-x^4/4]/(1-x),{x,0,nn}],x] (* Geoffrey Critzer, Oct 28 2012 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp( -(x^4/4) + x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */
A060726
For n >= 1, a(n) is the number of permutations in the symmetric group S_n such that their cycle decomposition contains no 6-cycle.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 600, 4200, 33600, 302400, 3024000, 33264000, 405820800, 5275670400, 73859385600, 1107890784000, 17726252544000, 301346293248000, 5419293175296000, 102966570330624000, 2059331406612480000
Offset: 0
Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001
a(6) = 600 because in S_6 the permutations with no 6-cycle are the complement of the 120 6-cycles so a(6) = 6! - 120 = 600.
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
-
for n from 0 to 30 do printf(`%d,`, n! * sum(( (-1)^i /(i! * 6^i)), i=0..floor(n/6))) od:
-
a(n)={n! * sum(i=0, n\6, (-1)^i / (i! * 6^i))} \\ Harry J. Smith, Jul 10 2009
A114320
Triangle T(n,k) = number of permutations of n elements with k 2-cycles.
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 15, 6, 3, 75, 30, 15, 435, 225, 45, 15, 3045, 1575, 315, 105, 24465, 12180, 3150, 420, 105, 220185, 109620, 28350, 3780, 945, 2200905, 1100925, 274050, 47250, 4725, 945, 24209955, 12110175, 3014550, 519750, 51975, 10395, 290529855
Offset: 0
T(3,1) = 3 because we have (1)(23), (12)(3) and (13)(2).
Triangle begins:
1;
1;
1, 1;
3, 3;
15, 6, 3;
75, 30, 15;
435, 225, 45, 15;
...
-
G:= exp((y-1)*x^2/2)/(1-x): Gser:= simplify(series(G,x=0,15)): P[0]:=1: for n from 1 to 12 do P[n]:= n!*coeff(Gser,x^n) od: for n from 0 to 12 do seq(coeff(y*P[n], y^j), j=1..1+floor(n/2)) od; # yields sequence in triangular form - Emeric Deutsch, Feb 17 2006
-
d = Exp[-x^2/2!]/(1 - x);f[list_] := Select[list, # > 0 &]; Flatten[Map[f, Transpose[Table[Range[0, 10]!CoefficientList[Series[x^(2 k)/(2^k k!) d, {x, 0, 10}], x], {k, 0, 5}]]]] (* Geoffrey Critzer, Nov 29 2011 *)
A060727
For n >= 1 a(n) is the number of permutations in the symmetric group S_n such that their cycle decomposition contains no 7-cycle.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4320, 34560, 311040, 3110400, 34214400, 410572800, 5337446400, 75613824000, 1134207360000, 18147317760000, 308504401920000, 5553079234560000, 105508505456640000, 2110170109132800000, 44288746761093120000, 974352428744048640000
Offset: 0
Avi Peretz (njk(AT)netvision.net.il), Apr 22 2001
a(7) = 4320 because in S_7 the permutations with no 7-cycle are the complement of the 720 7-cycles so a(7) = 7! - 720 = 4320.
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
-
for n from 0 to 30 do printf(`%d,`, n! * sum(( (-1)^i /(i! * 7^i)), i=0..floor(n/7))) od:
-
{ for (n=0, 100, write("b060727.txt", n, " ", n! * sum(i=0, n\7, (-1)^i / (i! * 7^i))); ) } \\ Harry J. Smith, Jul 10 2009
A122974
Triangle T(n,k), the number of permutations on n elements that have no cycles of length k.
Original entry on oeis.org
0, 1, 1, 2, 3, 4, 9, 15, 16, 18, 44, 75, 80, 90, 96, 265, 435, 520, 540, 576, 600, 1854, 3045, 3640, 3780, 4032, 4200, 4320, 14833, 24465, 29120, 31500, 32256, 33600, 34560, 35280, 133496, 220185, 259840, 283500, 290304, 302400, 311040, 317520, 322560
Offset: 1
T(3,2)=3 since there are exactly 3 permutations of 1,2,3 that have no cycles of length 2, namely, (1)(2)(3),(1 2 3) and (2 1 3).
Triangle T(n,k) begins:
0;
1, 1;
2, 3, 4;
9, 15, 16, 18;
44, 75, 80, 90, 96;
265, 435, 520, 540, 576, 600;
1854, 3045, 3640, 3780, 4032, 4200, 4320;
14833, 24465, 29120, 31500, 32256, 33600, 34560, 35280;
...
-
seq((round((2*n)^.5))!*sum((-1/(n-binomial(round((2*n)^.5),2)))^r/r!,r=0..floor(round((2*n)^.5)/(n-binomial(round((2*n)^.5),2)))),n=1..66);
# second Maple program:
T:= proc(n, k) option remember; `if`(n=0, 1, add(`if`(j=k, 0,
T(n-j, k)*binomial(n-1, j-1)*(j-1)!), j=1..n))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Nov 24 2019
-
T[n_, k_] := T[n, k] = If[n==0, 1, Sum[If[j==k, 0, T[n - j, k] Binomial[n - 1, j - 1] (j - 1)!], {j, 1, n}]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 08 2019, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments