A000266
Expansion of e.g.f. exp(-x^2/2) / (1-x).
Original entry on oeis.org
1, 1, 1, 3, 15, 75, 435, 3045, 24465, 220185, 2200905, 24209955, 290529855, 3776888115, 52876298475, 793144477125, 12690313661025, 215735332237425, 3883235945814225, 73781482970470275, 1475629660064134575, 30988222861346826075, 681740902935880863075
Offset: 0
a(3) = 3 because the permutations in S_3 that contain no transpositions are the trivial permutation and the two 3-cycles.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 85.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, page 93, problem 7.
-
G:=exp(-z^2/2)/(1-z): Gser:=series(G,z=0,26): for n from 0 to 25 do a(n):=n!*coeff(Gser,z,n): end do: seq(a(n), n=0..20); # Paul Weisenhorn, May 29 2010
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*(j-1)!*binomial(n-1, j-1), j=[1, $3..n]))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 12 2016
-
a=Log[1/(1-x)]-x^2/2; Range[0,20]! CoefficientList[Series[Exp[a], {x,0,20}], x] (* Geoffrey Critzer, Nov 29 2011 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( exp(-(x^2/2)+x*O(x^n)) / (1 - x), n))} /* Michael Somos, Jul 28 2009 */
A288950
Number of relaxed compacted binary trees of right height at most one with empty initial and final sequence on level 0.
Original entry on oeis.org
1, 0, 1, 2, 15, 140, 1575, 20790, 315315, 5405400, 103378275, 2182430250, 50414138775, 1264936572900, 34258698849375, 996137551158750, 30951416768146875, 1023460181133390000, 35885072600989486875, 1329858572860198631250, 51938365373373313209375
Offset: 0
Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
L-o-o-o-o-o-o-o-o-o
| | | |
o o-o-o o-o o.
For n=0 the a(0)=1 solution is L.
For n=1 we have a(1)=0 because we need nodes on level 0 and level 1.
For n=2 the a(2)=1 solution is
L-o
|
o
and the pointers of the node on level 1 both point to the leaf.
For n=3 the a(3)=2 solutions have the structure
L-o
|
o-o
where the pointers of the last node have to point to the leaf, but the pointer of the next node has 2 choices: the leaf of the previous node.
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
Cf.
A000032,
A000246,
A001879,
A051577,
A177145,
A213527,
A288950,
A288952,
A288953,
A288954 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
-
terms = 21; (z + (1 - z)/3*(2 - z + (1 - 2z)^(-1/2)) + O[z]^terms // CoefficientList[#, z] &) Range[0, terms-1]! (* Jean-François Alcover, Dec 04 2018 *)
A130906
Expansion of e.g.f. exp(x^3/3!)/(1-x).
Original entry on oeis.org
1, 1, 2, 7, 28, 140, 850, 5950, 47600, 428680, 4286800, 47154800, 565873000, 7356349000, 102988886000, 1544834691400, 24717355062400, 420195036060800, 7563510839684800, 143706705954011200, 2874134119080224000, 60356816536896880000, 1327849963811731360000
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[x^3/6]/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 10 2018 *)
A288952
Number of relaxed compacted binary trees of right height at most one with empty sequences between branch nodes on level 0.
Original entry on oeis.org
1, 0, 1, 2, 15, 92, 835, 8322, 99169, 1325960, 19966329, 332259290, 6070777999, 120694673748, 2594992240555, 59986047422378, 1483663965460545, 39095051587497488, 1093394763005554801, 32347902448449172530, 1009325655965539561231, 33125674098690460236620
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..100
- Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers and Michael Wallner, Asymptotic Enumeration of Compacted Binary Trees, arXiv:1703.10031 [math.CO], 2017.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017.
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
-
a := [1,0];; for n in [3..10^2] do a[n] := (n-2)*a[n-1] + (n-2)^2*a[n-2]; od; a; # Muniru A Asiru, Jan 26 2018
-
a:=proc(n) option remember: if n=0 then 1 elif n=1 then 0 elif n>=2 then (n-1)*procname(n-1)-(n-1)^2*procname(n-2) fi; end:
seq(a(n),n=0..100); # Muniru A Asiru, Jan 26 2018
-
Fold[Append[#1, (#2 - 1) Last[#1] + #1[[#2 - 1]] (#2 - 1)^2] &, {1, 0}, Range[2, 21]] (* Michael De Vlieger, Jan 28 2018 *)
A288953
Number of relaxed compacted binary trees of right height at most one with minimal sequences between branch nodes except after the last branch node on level 0.
Original entry on oeis.org
1, 1, 3, 10, 51, 280, 1995, 15120, 138075, 1330560, 14812875, 172972800, 2271359475, 31135104000, 471038042475, 7410154752000, 126906349444875, 2252687044608000, 43078308695296875, 851515702861824000, 17984171447178811875, 391697223316439040000
Offset: 0
Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
L-o-o-o-o-o-o-o-o
| | | | |
o o o o o.
For n=0 the a(0)=1 solution is L.
For n=1 the a(1)=1 solution is L-o.
For n=2 the a(2)=3 solutions are
L-o-o L-o
|
o
2 + 1 solutions of this shape with pointers.
Cf.
A288954 (variation with additional initial sequence).
Cf.
A177145 (variation without final sequence).
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
A193229
A double factorial triangle.
Original entry on oeis.org
1, 1, 1, 3, 3, 2, 15, 15, 12, 6, 105, 105, 90, 60, 24, 945, 945, 840, 630, 360, 120, 10395, 10395, 9450, 7560, 5040, 2520, 720, 135135, 135135, 124740, 103950, 75600, 45360, 20160, 5040, 2027025, 2027025, 1891890, 1621620, 1247400, 831600, 453600, 181440, 40320
Offset: 0
The first few rows of matrix M[i,j] are:
1, 1, 0, 0, 0, 0, ...
2, 2, 2, 0, 0, 0, ...
3, 3, 3, 3, 0, 0, ...
4, 4, 4, 4, 4, 0, ...
5, 5, 5, 5, 5, 5, ...
The first few rows of triangle T(n,k) are:
1;
1, 1;
3, 3, 2;
15, 15, 12, 6;
105, 105, 90, 60, 24;
945, 945, 840, 630, 360, 120;
10395, 10395, 9450, 7560, 5040, 2520, 720;
135135, 135135, 124740, 103950, 75600, 45360, 20160, 5040;
-
nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := i od: od: for n from 0 to nmax do B := M^n: for k from 0 to n do T(n,k) := B[1,k+1] od: od: for n from 0 to nmax do seq(T(n,k),k=0..n) od: seq(seq(T(n,k),k=0..n),n=0..nmax); # Johannes W. Meijer, Jul 21 2011
-
row(n)=(matrix(n,n,i,j,(i>j-2)*i)^(n-1))[1,] \\ M. F. Hasler, Jul 24 2011
A288954
Number of relaxed compacted binary trees of right height at most one with minimal sequences between branch nodes except before the first and after the last branch node on level 0.
Original entry on oeis.org
1, 1, 3, 13, 79, 555, 4605, 42315, 436275, 4894155, 60125625, 794437875, 11325612375, 172141044075, 2793834368325, 48009995908875, 874143494098875, 16757439016192875, 338309837281040625, 7157757510792763875, 158706419654857449375, 3673441093896736036875
Offset: 2
Cf.
A288953 (variation without initial sequence).
Cf.
A177145 (variation without initial and final sequence).
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
-
terms = 22; egf = 1/(3(1-z))(1/Sqrt[1-z^2] + (3z^3 - z^2 - 2z + 2)/((1-z)(1-z^2))) + O[z]^terms;
CoefficientList[egf, z] Range[0, terms-1]! (* Jean-François Alcover, Dec 13 2018 *)
A130907
E.g.f.: exp(x+x^2/2)/(1-x).
Original entry on oeis.org
1, 2, 6, 22, 98, 516, 3172, 22436, 180252, 1624888, 16258376, 178877832, 2146674136, 27907332272, 390705042288, 5860585983856, 93769421948432, 1594080384922656, 28693447925921632, 545175515402212448, 10903510331802913056, 228973717087813867072
Offset: 0
-
CoefficientList[Series[Exp[x + x^2/2 - Log[1 - x]], {x, 0, 21}], x]* Table[n!, {n, 0, 21}] (* Geoffrey Critzer, Apr 20 2009 *)
-
x='x+O('x^66);
egf=exp(x+x^2/2)/(1-x);
Vec(serlaplace(egf)) /* Joerg Arndt, Jul 11 2011 */
A193385
Expansion of e.g.f. cosh( x^2/2 )/ (1-x).
Original entry on oeis.org
1, 1, 2, 6, 27, 135, 810, 5670, 45465, 409185, 4091850, 45010350, 540134595, 7021749735, 98304496290, 1474567444350, 23593081136625, 401082379322625, 7219482827807250, 137170173728337750, 2743403475221484075
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Cosh(x^2/2)/(1-x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 13 2018
-
a:=series(cosh(x^2/2)/(1-x),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 27 2019
-
With[{nn=30},CoefficientList[Series[Cosh[x^2/2]/(1-x),{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, May 01 2012 *)
-
{a(n) = if( n<0, 0, n! * polcoeff( cosh( x^2 / 2 + x * O(x^n)) / (1 - x), n))}
A319364
Expansion of e.g.f. exp(x^3/3)/(1 - x).
Original entry on oeis.org
1, 1, 2, 8, 32, 160, 1000, 7000, 56000, 506240, 5062400, 55686400, 668483200, 8690281600, 121663942400, 1825003980800, 29200063692800, 496401082777600, 8935231687782400, 169769402067865600, 3395388041357312000, 71303153503662080000, 1568669377080565760000, 36079395672853012480000
Offset: 0
-
seq(n!*coeff(series(exp(x^3/3)/(1 - x),x=0,24),x,n),n=0..23); # Paolo P. Lava, Jan 09 2019
-
nmax = 23; CoefficientList[Series[Exp[x^3/3]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
-
my(x='x+O('x^30)); Vec(serlaplace(exp(x^3/3)/(1 - x))) \\ Michel Marcus, Dec 17 2020
Showing 1-10 of 15 results.
Comments