cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027789 a(n) = 2*(n+1)*binomial(n+3,4).

Original entry on oeis.org

4, 30, 120, 350, 840, 1764, 3360, 5940, 9900, 15730, 24024, 35490, 50960, 71400, 97920, 131784, 174420, 227430, 292600, 371910, 467544, 581900, 717600, 877500, 1064700, 1282554, 1534680, 1824970, 2157600, 2537040, 2968064, 3455760, 4005540, 4623150, 5314680
Offset: 1

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 8-subsequences of [ 1, n ] with just 3 contiguous pairs.
Also the number of 3-cycles in the n+3 tetrahedral graph. - Eric W. Weisstein, Jul 12 2017

Crossrefs

Cf. A006470, A289792 (4-cycles), A289793 (5-cycles), A289794 (6-cycles).

Programs

  • Magma
    [2*(n+1)*Binomial(n+3,4): n in [1..40]]; // Vincenzo Librandi, Jul 13 2017
    
  • Maple
    A027789:=n->2*(n+1)*binomial(n+3,4): seq(A027789(n), n=1..60); # Wesley Ivan Hurt, Oct 23 2017
  • Mathematica
    Table[2 (n + 1) Binomial[n + 3, 4], {n, 40}] (* Harvey P. Dale, Jan 20 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {4, 30, 120, 350, 840, 1764},40] (* Harvey P. Dale, Jan 20 2015 *)
    Table[n (1 + n)^2 (2 + n) (3 + n)/12, {n, 20}] (* Eric W. Weisstein, Jul 12 2017 *)
    CoefficientList[Series[(2 (2 + 3 x))/(-1 + x)^6, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 12 2017 *)
  • PARI
    for(n=1,50, print1(2*(n+1)*binomial(n+3,4), ", ")) \\ G. C. Greubel, Oct 22 2017

Formula

G.f.: 2*(2+3x)*x/(1-x)^6.
a(n) = 2*A006470(n).
a(n) = C(n+1, 2)*C(n+3, 3). - Zerinvary Lajos, May 10 2005, corrected by R. J. Mathar, Feb 13 2016
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Jan 20 2015
a(n) = Sum_{k=1..n+1} Sum_{i=1..n+1} (n-i+1) * C(k+1,k-1). - Wesley Ivan Hurt, Sep 21 2017
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=1} 1/a(n) = 61/6 - Pi^2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/2 - 8*log(2) + 5/6. (End)