A027872 a(n) = Product_{i=1..n} (5^i - 1).
1, 4, 96, 11904, 7428096, 23205371904, 362560730628096, 28324694519589371904, 11064305472020078810628096, 21609960560733744406929189371904, 211034749490954911990173458030810628096
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Magma
[1] cat [&*[ 5^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
Maple
A027872 := proc(n) mul( 5^i-1, i=1..n) ; end proc: # R. J. Mathar, Mar 12 2013
-
Mathematica
Table[Product[(5^k-1),{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *) Abs@QPochhammer[5, 5, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *) Join[{1},FoldList[Times,5^Range[10]-1]] (* Harvey P. Dale, Dec 28 2021 *)
-
PARI
a(n) = prod(i=1, n, 5^i-1); \\ Michel Marcus, Nov 21 2015
Formula
4^n|a(n) for n >= 1. - G. C. Greubel, Nov 21 2015
a(n) ~ c * 5^(n*(n+1)/2), where c = Product_{k>=1} (1-1/5^k) = A100222 . - Vaclav Kotesovec, Nov 21 2015
a(n) = 5^(binomial(n+1,2))*(1/5; 1/5){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 23 2015
a(n) = Product_{i=1..n} A024049(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 5^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 5^k*x). - Ilya Gutkovskiy, May 22 2017
Sum_{n>=0} (-1)^n/a(n) = A100222. - Amiram Eldar, May 07 2023
Comments