cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027927 Number of plane regions after drawing (in general position) a convex n-gon and all its diagonals.

Original entry on oeis.org

1, 2, 5, 12, 26, 51, 92, 155, 247, 376, 551, 782, 1080, 1457, 1926, 2501, 3197, 4030, 5017, 6176, 7526, 9087, 10880, 12927, 15251, 17876, 20827, 24130, 27812, 31901, 36426, 41417, 46905, 52922, 59501, 66676, 74482, 82955, 92132, 102051, 112751, 124272, 136655, 149942, 164176, 179401
Offset: 2

Views

Author

Keywords

Comments

For n>=1, a(n+1) is the number of Grassmannian permutations that avoid a pattern, sigma, where sigma is a pattern of size 5 with exactly one descent. - Jessica A. Tomasko, Nov 15 2022

Examples

			a(2)=1 (segment traced twice has only exterior).
		

Crossrefs

Cf. A006522 (does not count exterior of n-gon).

Programs

  • GAP
    List([2..50], n-> (n^4 -6*n^3 +23*n^2 -42*n +48)/24); # G. C. Greubel, Sep 06 2019
  • Magma
    [(n^4 -6*n^3 +23*n^2 -42*n +48)/24: n in [2..50]]; // G. C. Greubel, Sep 06 2019
    
  • Maple
    seq((n^4 -6*n^3 +23*n^2 -42*n +48)/24, n=2..50); # G. C. Greubel, Sep 06 2019
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1 }, {1,2,5,12,26}, 50] (* Vincenzo Librandi, Feb 01 2012 *)
    S[n_] :=n*(n+1)/2; Table[S[S[n]+2]/3, {n, 0, 50}] (* Waldemar Puszkarz, Jan 22 2016 *)
  • PARI
    a(n)=n*(n^3-6*n^2+23*n-42)/24+2 \\ Charles R Greathouse IV, Jan 31 2012
    
  • Sage
    [(n^4 -6*n^3 +23*n^2 -42*n +48)/24 for n in (2..50)] # G. C. Greubel, Sep 06 2019
    

Formula

a(n) = T(n, 2*n-4), T given by A027926.
a(n) = 1 + binomial(n, 4) + binomial(n-1, 2) = (n^4 - 6*n^3 + 23*n^2 - 42*n + 48)/24.
G.f.: x^2*(1 -3*x +5*x^2 -3*x^3 +x^4)/(1-x)^5. - Colin Barker, Jan 31 2012
a(n) = (1/6)*A152950(n-1)*A152948(n). - Bruno Berselli, Jan 31 2012
a(n) = A000217(A000217(n-2)+2)/3, a(n+1) - a(n) = A004006(n-1) for n > 2. - Waldemar Puszkarz, Jan 22 2016 [Adjusted for offset by Peter Munn, Jan 10 2023]
a(n) = 1 + Sum {i=3..5} binomial(n-1, i-1). - Jessica A. Tomasko, Nov 15 2022

Extensions

New name from Len Smiley, Oct 19 2001