A027926
Triangular array T read by rows: T(n,0) = T(n,2n) = 1 for n >= 0; T(n,1) = 1 for n >= 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) for k = 2..2n-1, n >= 2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 4, 3, 1, 1, 1, 2, 3, 5, 7, 7, 4, 1, 1, 1, 2, 3, 5, 8, 12, 14, 11, 5, 1, 1, 1, 2, 3, 5, 8, 13, 20, 26, 25, 16, 6, 1, 1, 1, 2, 3, 5, 8, 13, 21, 33, 46, 51, 41, 22, 7, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 54, 79, 97, 92, 63, 29, 8, 1
Offset: 0
. 0: 1
. 1: 1 1 1
. 2: 1 1 2 2 1
. 3: 1 1 2 3 4 3 1
. 4: 1 1 2 3 5 7 7 4 1
. 5: 1 1 2 3 5 8 12 14 11 5 1
. 6: 1 1 2 3 5 8 13 20 26 25 16 6 1
. 7: 1 1 2 3 5 8 13 21 33 46 51 41 22 7 1
. 8: 1 1 2 3 5 8 13 21 34 54 79 97 92 63 29 8 1
. 9: 1 1 2 3 5 8 13 21 34 55 88 133 176 189 155 92 37 9 1
. 10: 1 1 2 3 5 8 13 21 34 55 89 143 221 309 365 344 247 129 46 10 1
.
. 1: 1
. 2: 1 1
. 3: 1 1 2
. 4: 1 1 2 3
. 5: 1 1 2 3 5 columns = A000045, > 0
. 6: 1 1 2 3 5 8 +---------+
. 7: 1 1 2 3 5 8 13 | A104763 |
. 8: 1 1 2 3 5 8 13 21 +---------+
. 9: 1 1 2 3 5 8 13 21 34
. 10: 1 1 2 3 5 8 13 21 34 55
. 11: 1 1 2 3 5 8 13 21 34 55 89
.
. 0: 1
. 1: 1 1 +---------+
. 2: 2 2 1 | A105809 |
. 3: 3 4 3 1 +---------+
. 4: 5 7 7 4 1
. 5: 8 12 14 11 5 1
. 6: 13 20 26 25 16 6 1
. 7: 21 33 46 51 41 22 7 1
. 8: 34 54 79 97 92 63 29 8 1
. 9: 55 88 133 176 189 155 92 37 9 1
. 10: 89 143 221 309 365 344 247 129 46 10 1
-
Flat(List([0..10], n-> List([0..2*n], k-> Sum([0..Int((2*n-k+1)/2) ], j-> Binomial(n-j, 2*n-k-2*j) )))); # G. C. Greubel, Sep 05 2019
-
a027926 n k = a027926_tabf !! n !! k
a027926_row n = a027926_tabf !! n
a027926_tabf = iterate (\xs -> zipWith (+)
([0] ++ xs ++ [0]) ([1,0] ++ xs)) [1]
-- Variant, cf. example:
a027926_tabf' = zipWith (++) a104763_tabl (map tail a105809_tabl)
-- Reinhard Zumkeller, Aug 15 2013
-
[&+[Binomial(n-j, 2*n-k-2*j): j in [0..Floor((2*n-k+1)/2)]]: k in [0..2*n], n in [0..10]]; // G. C. Greubel, Sep 05 2019
-
A027926 := proc(n,k)
add(binomial(n-j,2*n-k-2*j),j=0..(2*n-k+1)/2) ;
end proc: # R. J. Mathar, Apr 11 2016
-
z = 15; t[n_, 0] := 1; t[n_, k_] := 1 /; k == 2 n; t[n_, 1] := 1;
t[n_, k_] := t[n, k] = t[n - 1, k - 2] + t[n - 1, k - 1];
u = Table[t[n, k], {n, 0, z}, {k, 0, 2 n}];
TableForm[u] (* A027926 array *)
v = Flatten[u] (* A027926 sequence *)
(* Clark Kimberling, Aug 31 2014 *)
Table[Sum[Binomial[n-j, 2*n-k-2*j], {j, 0, Floor[(2*n-k+1)/2]}], {n, 0, 10}, {k, 0, 2*n}]//Flatten (* G. C. Greubel, Sep 05 2019 *)
-
{T(n, k) = if( k<0 || k>2*n, 0, if( k<=1 || k==2*n, 1, T(n-1, k-2) + T(n-1, k-1)))}; /* _Michael Somos, Feb 26 1999 */
-
{T(n, k) = if( k<0 || k>2*n, 0, sum( j=max(0, k-n), k\2, binomial(k-j, j)))}; /* Michael Somos */
-
[[sum(binomial(n-j, 2*n-k-2*j) for j in (0..floor((2*n-k+1)/2))) for k in (0..2*n)] for n in (0..10)] # G. C. Greubel, Sep 05 2019
A228074
A Fibonacci-Pascal triangle read by rows: T(n,0) = Fibonacci(n), T(n,n) = n and for n > 0: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 2, 3, 4, 3, 3, 5, 7, 7, 4, 5, 8, 12, 14, 11, 5, 8, 13, 20, 26, 25, 16, 6, 13, 21, 33, 46, 51, 41, 22, 7, 21, 34, 54, 79, 97, 92, 63, 29, 8, 34, 55, 88, 133, 176, 189, 155, 92, 37, 9, 55, 89, 143, 221, 309, 365, 344, 247, 129, 46, 10
Offset: 0
. 0: 0
. 1: 1 1
. 2: 1 2 2
. 3: 2 3 4 3
. 4: 3 5 7 7 4
. 5: 5 8 12 14 11 5
. 6: 8 13 20 26 25 16 6
. 7: 13 21 33 46 51 41 22 7
. 8: 21 34 54 79 97 92 63 29 8
. 9: 34 55 88 133 176 189 155 92 37 9
. 10: 55 89 143 221 309 365 344 247 129 46 10
. 11: 89 144 232 364 530 674 709 591 376 175 56 11
. 12: 144 233 376 596 894 1204 1383 1300 967 551 231 67 12 .
diagonals T(*,k):
A000045,
A000071,
A001924,
A014162,
A014166,
A053739,
A053295,
A053296,
A053308,
A053309;
diagonals T(k,*):
A001477,
A001245,
A004006,
A027927,
A027928,
A027929,
A027930,
A027931,
A027932,
A027933;
-
T:= function(n,k)
if k=0 then return Fibonacci(n);
elif k=n then return n;
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Sep 05 2019
-
a228074 n k = a228074_tabl !! n !! k
a228074_row n = a228074_tabl !! n
a228074_tabl = map fst $ iterate
(\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [1]))) ([0], [1,1])
-
with(combinat);
T:= proc (n, k) option remember;
if k = 0 then fibonacci(n)
elif k = n then n
else T(n-1, k-1) + T(n-1, k)
end if
end proc;
seq(seq(T(n, k), k = 0..n), n = 0..12); # G. C. Greubel, Sep 05 2019
-
T[n_, k_]:= T[n, k]= If[k==0, Fibonacci[n], If[k==n, n, T[n-1, k-1] + T[n -1, k]]]; Table[T[n, k], {n,0,12}, {k,0,n}] (* G. C. Greubel, Sep 05 2019 *)
-
T(n,k) = if(k==0, fibonacci(n), if(k==n, n, T(n-1, k-1) + T(n-1, k)));
for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Sep 05 2019
-
def T(n, k):
if (k==0): return fibonacci(n)
elif (k==n): return n
else: return T(n-1, k) + T(n-1, k-1)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 05 2019
A292508
Number A(n,k) of partitions of n with k kinds of 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 2, 1, 4, 7, 7, 5, 2, 1, 5, 11, 14, 12, 7, 4, 1, 6, 16, 25, 26, 19, 11, 4, 1, 7, 22, 41, 51, 45, 30, 15, 7, 1, 8, 29, 63, 92, 96, 75, 45, 22, 8, 1, 9, 37, 92, 155, 188, 171, 120, 67, 30, 12, 1, 10, 46, 129, 247, 343, 359, 291, 187, 97, 42, 14
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, ...
1, 2, 4, 7, 11, 16, 22, 29, 37, ...
1, 3, 7, 14, 25, 41, 63, 92, 129, ...
2, 5, 12, 26, 51, 92, 155, 247, 376, ...
2, 7, 19, 45, 96, 188, 343, 590, 966, ...
4, 11, 30, 75, 171, 359, 702, 1292, 2258, ...
4, 15, 45, 120, 291, 650, 1352, 2644, 4902, ...
7, 22, 67, 187, 478, 1128, 2480, 5124, 10026, ...
Columns k=0-10 give:
A002865,
A000041,
A000070,
A014153,
A014160,
A014161,
A120477,
A320753,
A320754,
A320755,
A320756.
-
A:= proc(n, k) option remember; `if`(n=0, 1, add(
(numtheory[sigma](j)+k-1)*A(n-j, k), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1,
A(n, k+1)-A(n-1, k+1), `if`(k=1, combinat[numbpart](n),
A(n-1, k)+A(n, k-1))))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
# third Maple program:
b:= proc(n, i, k) option remember; `if`(n=0 or i<2,
binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, Binomial[k + n - 1, n], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]];
A[n_, k_] := b[n, n, k];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 17 2018, translated from 3rd Maple program *)
A362193
Number of Grassmannian permutations of size n that avoid a pattern, sigma, where sigma is a pattern of size 6 with exactly one descent.
Original entry on oeis.org
1, 1, 2, 5, 12, 27, 57, 113, 211, 373, 628, 1013, 1574, 2367, 3459, 4929, 6869, 9385, 12598, 16645, 21680, 27875, 35421, 44529, 55431, 68381, 83656, 101557, 122410, 146567, 174407, 206337, 242793, 284241, 331178, 384133, 443668, 510379, 584897
Offset: 0
- Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, Enum. Combin. Appl. 2 (2022), no. 4, Article #S4PP6.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
a:= n-> 1+(n-1)*n*(n+1)*(n*(n-5)+26)/120:
seq(a(n), n=0..38); # Alois P. Heinz, Apr 12 2023
-
CoefficientList[Series[(1 - 5 x + 11 x^2 - 12 x^3 + 7 x^4 - x^5)/(1 - x)^6, {x, 0, 38}], x] (* Michael De Vlieger, Apr 12 2023 *)
-
a(n) = 1 + sum(i=3, 6, binomial(n, i-1)) \\ Andrew Howroyd, Apr 10 2023
Original entry on oeis.org
1, 3, 10, 28, 66, 136, 253, 435, 703, 1081, 1596, 2278, 3160, 4278, 5671, 7381, 9453, 11935, 14878, 18336, 22366, 27028, 32385, 38503, 45451, 53301, 62128, 72010, 83028, 95266, 108811, 123753, 140185, 158203, 177906, 199396, 222778, 248160, 275653, 305371
Offset: 0
For n=0, a(0)=1*2/2=1. For n=2, a(2)=4*5/2=10.
Cf.
A000217 (triangular numbers),
A229183 (consecutive terms differences),
A082044 (related sequence for squares),
A027927 (related sequence for triangular numbers).
-
I:=[1,3,10,28,66]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Jan 22 2016
-
S[n_] :=n*(n+1)/2; Table[S[S[n]+1], {n, 0, 50}]
Table[(n*(n+1)/2+1)(n*(n+1)/2+2)/2, {n, 0, 50}]
Table[(n^4+2*n^3+7*n^2+6*n+8)/8, {n, 0, 50}]
CoefficientList[Series[(1 - 2 x + 5 x^2 - 2 x^3 + x^4) / (1 - x)^5, {x, 0, 33}], x] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 3, 10, 28, 66}, 50] (* Vincenzo Librandi, Jan 22 2016 *)
-
for(n=0,50,print1((n^4+2*n^3+7*n^2+6*n+8)/8 ", "))
A337977
Triangle T(n,m) = C(n-1,n-m)*Sum_{k=1..n} C(2*k-2,k-1)*C(n-m,m-k)/m, m>0, n>0, n>=m.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 6, 8, 5, 1, 10, 22, 26, 14, 1, 15, 50, 85, 90, 42, 1, 21, 100, 225, 348, 322, 132, 1, 28, 182, 525, 1050, 1442, 1176, 429, 1, 36, 308, 1120, 2730, 4928, 5992, 4356, 1430, 1, 45, 492, 2226, 6426, 14238, 22920, 24894, 16302, 4862
Offset: 1
1,
1, 1,
1, 3, 2,
1, 6, 8, 5,
1,10, 22, 26, 14,
1,15, 50, 85, 90, 42,
1,21,100,225,348,322,132
-
Table[Binomial[n - 1, n - m] Sum[Binomial[2 k - 2, k - 1] Binomial[n - m, m - k]/m, {k, n}], {n, 10}, {m, n}] // Flatten (* Michael De Vlieger, Oct 05 2020 *)
-
T(n,m):=(binomial(n-1,n-m)*sum(binomial(2*k-2,k-1)*binomial(n-m,m-k),k,1,n))/m;
Showing 1-6 of 6 results.
Comments