A028959 Theta series of quadratic form with Gram matrix [ 2, 1; 1, 12 ].
1, 2, 0, 0, 2, 0, 4, 0, 4, 2, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 2, 4, 2, 4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 4, 0, 4, 0, 0, 0, 4, 4, 0, 0, 4, 0, 6, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 4, 0, 0, 2, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 4, 4, 0, 8, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 2*x^4 + 4*x^6 + 4*x^8 + 2*x^9 + 4*x^12 + 2*x^16 + 4*x^18 + ... G.f. = 1 + 2*q^2 + 2*q^8 + 4*q^12 + 4*q^16 + 2*q^18 + 4*q^24 + 2*q^32 + 4*q^36 + 2*q^46 + 4*q^48 + 2*q^50 + 4*q^52 + 4*q^54 + 4*q^64 + 6*q^72 + 4*q^78 + 8*q^96 + ...
References
- Köklüce, Bülent. "Cusp forms in S_6 (Gamma_ 0(23)), S_8 (Gamma_0 (23)) and the number of representations of numbers by some quadratic forms in 12 and 16 variables." The Ramanujan Journal 34.2 (2014): 187-208. See F_1, p. 195.
Links
- John Cannon, Table of n, a(n) for n = 0..5000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A028958.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^23] + EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^23], {x, 0, n}]; (* Michael Somos, Mar 28 2015 *)
Formula
Expansion of phi(x) * phi(x^23) + 4*x^6 * psi(x^2) * psi(x^46) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Mar 28 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (23 t)) = 23^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Mar 28 2015
G.f.: (theta_3(z)*theta_3(23z) + theta_2(z)*theta_2(23z)).
Comments