A028982 Squares and twice squares.
1, 2, 4, 8, 9, 16, 18, 25, 32, 36, 49, 50, 64, 72, 81, 98, 100, 121, 128, 144, 162, 169, 196, 200, 225, 242, 256, 288, 289, 324, 338, 361, 392, 400, 441, 450, 484, 512, 529, 576, 578, 625, 648, 676, 722, 729, 784, 800, 841, 882, 900, 961, 968, 1024
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Tewodros Amdeberhan, Victor H. Moll, Vaishavi Sharma, and Diego Villamizar, Arithmetic properties of the sum of divisors, arXiv:2007.03088 [math.NT], 2020. See p. 5.
- J. N. Cooper and A. W. N. Riasanovsky, On the Reciprocal of the Binary Generating Function for the Sum of Divisors, Journal of Integer Sequences, Vol. 16 (2013), #13.1.8.
- Patrick De Geest, World!Of Numbers
- John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163.
- Eric Weisstein's World of Mathematics, Abundance
Crossrefs
Programs
-
Haskell
import Data.List.Ordered (union) a028982 n = a028982_list !! (n-1) a028982_list = tail $ union a000290_list a001105_list -- Reinhard Zumkeller, Jun 27 2015
-
Mathematica
Take[ Sort[ Flatten[ Table[{n^2, 2n^2}, {n, 35}] ]], 57] (* Robert G. Wilson v, Aug 27 2004 *)
-
PARI
list(lim)=vecsort(concat(vector(sqrtint(lim\1),i,i^2), vector(sqrtint(lim\2),i,2*i^2))) \\ Charles R Greathouse IV, Jun 16 2011
-
Python
from itertools import count, islice from sympy.ntheory.primetest import is_square def A028982_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:int(is_square(n) or is_square(n<<1)),count(max(startvalue,1))) A028982_list = list(islice(A028982_gen(),30)) # Chai Wah Wu, Jan 09 2023
-
Python
from math import isqrt def A028982(n): def f(x): return n-1+x-isqrt(x)-isqrt(x>>1) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 22 2024
Formula
a(n) is asymptotic to c*n^2 with c = 2/(1+sqrt(2))^2 = 0.3431457.... - Benoit Cloitre, Sep 17 2002
In particular, a(n) = c*n^2 + O(n). - Charles R Greathouse IV, Jan 11 2013
Sum_{n>=1} 1/a(n) = Pi^2/4. - Amiram Eldar, Jun 28 2020
Comments