A029635 The (1,2)-Pascal triangle (or Lucas triangle) read by rows.
2, 1, 2, 1, 3, 2, 1, 4, 5, 2, 1, 5, 9, 7, 2, 1, 6, 14, 16, 9, 2, 1, 7, 20, 30, 25, 11, 2, 1, 8, 27, 50, 55, 36, 13, 2, 1, 9, 35, 77, 105, 91, 49, 15, 2, 1, 10, 44, 112, 182, 196, 140, 64, 17, 2, 1, 11, 54, 156, 294, 378, 336, 204, 81, 19, 2, 1, 12, 65, 210, 450, 672, 714, 540, 285, 100
Offset: 0
Examples
Triangle begins: [0] [2] [1] [1, 2] [2] [1, 3, 2] [3] [1, 4, 5, 2] [4] [1, 5, 9, 7, 2] [5] [1, 6, 14, 16, 9, 2] [6] [1, 7, 20, 30, 25, 11, 2] [7] [1, 8, 27, 50, 55, 36, 13, 2] [8] [1, 9, 35, 77, 105, 91, 49, 15, 2] . Read as a square, the array begins: n\k| 0 1 2 3 4 5 -------------------------------------- 0 | 2 2 2 2 2 2 A040000 1 | 1 3 5 7 9 11 A005408 2 | 1 4 9 16 25 36 A000290 3 | 1 5 14 30 55 91 A000330 4 | 1 6 20 50 105 196 A002415 5 | 1 7 27 77 182 378 A005585 6 | 1 8 35 112 294 672 A040977
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Alfred S. Posamentier & Ingmar Lehmann, The (Fabulous) Fibonacci Numbers. New York: Prometheus Books (2007): 97 - 105.
- M. Shubin and S. Andersson, Pseudodifferential Operators and Spectral Theory, Springer Series in Soviet Mathematics, 1987.
Links
- Vincenzo Librandi, Rows n = 0..102, flattened
- P. R. J. Asveld, Generating all permutations by context-free grammars in Chomsky normal form, Theoretical Computer Science 354 (2006) 118-130.
- Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Arthur T. Benjamin, The Lucas triangle recounted
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 25.
- Junesang Choi, Determinants of the Laplacians on the n-dimensional unit sphere S^n , Advances in Difference Equations, 236, 2013.
- N. Durov, S. Meljanac, A. Samsarov, Z. Skoda, A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra, arXiv preprint arXiv:math/0604096 [math.RT], 2006.
- S. Falcon, On the Lucas triangle and its relationship with the k-Lucas numbers, Journal of Mathematical and Computational Science, 2 (2012), No. 3, 425-434. - _N. J. A. Sloane_, Sep 20 2012
- Mark Feinberg, A Lucas triangle, Fibonacci Quart. 5 (1967), 486-490.
- Hans-Christian Herbig, Daniel Herden, Christopher Seaton, An algebra generated by x-2, arXiv:1605.01572 [math.CO], 2016.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, C. M. Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014 and J. Int. Seq. 18 (2015) 15.10.6.
- Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., 36 (1998), 98-109. [Here the initial term is 1 not 2]
- C. M. Ringel, The Catalan combinatorics of the hereditary artin algebras, arXiv preprint arXiv:1502.06553 [math.RT], 2015.
- Neville Robbins, The Lucas triangle revisited, Fibonacci Quarterly 43, May 2005, pp. 142-148.
- Lee-Peng Teo, Zeta function of spheres and real projective spaces, arXiv:1412.0758v1 [math.NT], 2014.
- Xu Wang, Xuxu Zhao, Haiyuan Yao, Structure and enumeration results of matchable Lucas cubes, arXiv:1810.07329 [math.CO], 2018. See Table 1 p. 3.
- Y. Yang and J. Leida, Pascal decompositions of geometric arrays in matrices, The Fibonacci Quarterly 42.3 (2004).
Crossrefs
Programs
-
Haskell
a029635 n k = a029635_tabl !! n !! k a029635_row n = a029635_tabl !! n a029635_tabl = [2] : iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,2] -- Reinhard Zumkeller, Mar 12 2012, Feb 23 2012
-
Maple
T := proc(n, k) option remember; if n = k then 2 elif k = 0 then 1 else T(n-1, k-1) + T(n-1, k) fi end: for n from 0 to 8 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Dec 22 2024
-
Mathematica
t[0, 0] = 2; t[n_, k_] := If[k < 0 || k > n, 0, Binomial[n, k] + Binomial[n-1, k-1]]; Flatten[Table[t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, May 03 2011 *) (* The next program cogenerates A029635 and A029638. *) u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1 Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A029638 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A029635 *) (* Clark Kimberling, Feb 20 2012 *) Table[Binomial[n,k]+Binomial[n-1,k-1],{n,0,20},{k,0,n}]//Flatten (* Harvey P. Dale, Feb 08 2024 *)
-
PARI
{T(n, k) = if( k<0 || k>n, 0, (n==0) + binomial(n, k) + binomial(n-1, k-1))}; /* Michael Somos, Jul 15 2003 */
-
Sage
# uses[riordan_array from A256893] riordan_array((2-x)/(1-x), x/(1-x), 8) # Peter Luschny, Nov 09 2019
Formula
From Henry Bottomley, Apr 26 2002; (Start)
T(n, k) = T(n-1, k-1) + T(n-1, k).
T(n, k) = C(n, k) + C(n-1, k-1).
T(n, k) = C(n, k)*(n + k)/n.
T(n, k) = A061896(n + k, k) but with T(0, 0) = 1 and T(1, 1) = 2.
Row sum is floor(3^2(n-1)) i.e., A003945. (End)
G.f.: 1 + (1 + x*y) / (1 - x - x*y). - Michael Somos, Jul 15 2003
G.f. for n-th row: (x+2*y)*(x+y)^(n-1).
O.g.f. for row n: (1+x)/(1-x)^(n+1). The entries in row n are the nonzero entries in column n of A053120 divided by 2^(n-1). - Peter Bala, Aug 14 2008
T(2n, n) - T(2n, n+1)= Catalan(n)= A000108(n). - Philippe Deléham, Mar 19 2009
With T(0, 0) = 1 : Triangle T(n, k), read by rows, given by [1,0,0,0,0,0,...] DELTA [2,-1,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 10 2011
With T(0, 0) = 1, as in the Example section below, this is known as Vieta's array. The LU factorization of the square array is given by Yang and Leida, equation 20. - Peter Bala, Feb 11 2012
For n > 0: T(n, k) = A097207(n-1, k), 0 <= k < n. - Reinhard Zumkeller, Mar 12 2012
Riordan array ((2-x)/(1-x), x/(1-x)). - Philippe Deléham, Mar 15 2013
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(1 + 4*x + 5*x^2/2! + 2*x^3/3!) = 1 + 5*x + 14*x^2/2! + 30*x^3/3! + 55*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014
For n>=1: T(n, 0) + T(n, 1) + T(n, 2) = A000217(n+1). T(n, n-2) = (n-1)^2. - Bob Selcoe, Mar 29 2016:
Extensions
More terms from David W. Wilson
a(0) changed to 2 (was 1) by Daniel Forgues, Jul 06 2010
Comments