A030130 Binary expansion contains a single 0.
0, 2, 5, 6, 11, 13, 14, 23, 27, 29, 30, 47, 55, 59, 61, 62, 95, 111, 119, 123, 125, 126, 191, 223, 239, 247, 251, 253, 254, 383, 447, 479, 495, 503, 507, 509, 510, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022, 1535, 1791, 1919, 1983, 2015, 2031, 2039
Offset: 1
Examples
23 is OK because it is '10111' in base 2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
C
long int element (long int i) { return (pow(2,g(i))-1-pow(2,(pow(2*g(i)-1,2)-1-8*i)/8));} long int g(long int m) {if (m==0) return(1); return ((sqrt(8*m-7)+3)/2);}
-
Haskell
a030130 n = a030130_list !! (n-1) a030130_list = filter ((== 1) . a023416) [0..] -- Reinhard Zumkeller, Mar 31 2015, Dec 07 2012
-
Magma
[0] cat [k:k in [0..2050]| Multiplicity(Intseq(k,2),0) eq 1]; // Marius A. Burtea, Feb 06 2020
-
Mathematica
Sort[Flatten[{{0}, Table[2^n - 2^m - 1, {n, 2, 50}, {m, 0, n - 2}]}]] (* Zak Seidov, Aug 06 2010 *) Select[Range[0,2100],DigitCount[#,2,0]==1&] (* Harvey P. Dale, Dec 19 2021 *)
-
PARI
print1("0, ");for(k=1,2039,my(v=digits(k,2));if(vecsum(v)==#v-1,print1(k,", "))) \\ Hugo Pfoertner, Feb 06 2020
-
Python
from math import isqrt, comb def A030130(n): return (1<<(a:=(isqrt(n-1<<3)+1>>1)+1))-(1<
Chai Wah Wu, Dec 19 2024
Formula
a(n) = 2^(g(n))-1-2^(((2*g(n)-1)^2-1-8*n)/8) with g(n)=int((sqrt(8*n-7)+3)/2) for all n>0 and g(0)=1. - Ulrich Schimke (ulrschimke(AT)aol.com)
a(n+1) = A140977(a(n)) for any n > 1. - Rémy Sigrist, Feb 06 2020
Sum_{n>=2} 1/a(n) = A160502. - Amiram Eldar, Oct 06 2020
a(n) = (A190620(n-1)-1)/2. - Chai Wah Wu, Dec 19 2024
Extensions
More terms from Erich Friedman
Offset fixed by Reinhard Zumkeller, Aug 24 2009
Comments