A055010 a(0) = 0; for n > 0, a(n) = 3*2^(n-1) - 1.
0, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, 3071, 6143, 12287, 24575, 49151, 98303, 196607, 393215, 786431, 1572863, 3145727, 6291455, 12582911, 25165823, 50331647, 100663295, 201326591, 402653183, 805306367, 1610612735, 3221225471, 6442450943, 12884901887
Offset: 0
Examples
a(3) = 3*2^2 - 1 = 3*4 - 1 = 11.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric S. Egge and Toufik Mansour, 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers, arXiv:math/0205206 [math.CO], 2002.
- Sergey Kitaev and Toufik Mansour, Counting the occurrences of generalized patterns in words generated by a morphism, arXiv:math/0210170 [math.CO], 2002.
- Hunar Sherzad Taher and Saroj Kumar Dash, On sums of k-generalized Fibonacci and k-generalized Lucas numbers as first and second kinds of Thabit numbers, Notes Num. Theor. Disc. Math. (2025) Vol. 31, No. 3, 448-459. See p. 2.
- Eric Weisstein's World of Mathematics, Thabit ibn Kurrah Number.
- Wikipedia, Thabit number.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
GAP
Concatenation([0], List([1..35], n-> 3*2^(n-1)-1)); # G. C. Greubel, May 06 2019
-
Magma
[Floor(3*2^(n-1) - 1): n in [0..35]]; // Vincenzo Librandi, May 18 2011
-
Mathematica
Join[{0},3*2^Range[0,34]-1] (* Harvey P. Dale, May 05 2013 *)
-
PARI
a(n)=3*2^n\2 - 1 \\ Charles R Greathouse IV, Apr 08 2016
-
Sage
[0]+[3*2^(n-1)-1 for n in (1..35)] # G. C. Greubel, May 06 2019
Formula
a(n) = A118654(n-1, 4), for n > 0.
a(n) = 2*a(n-1) + 1 = a(n-1) + A007283(n-1) = A007283(n)-1 = A000079(n) + A000225(n + 1) = A000079(n + 1) + A000225(n) = 3*A000079(n) - 1 = 3*A000225(n) + 2.
a(n) = A010036(n)/2^(n-1). - Philippe Deléham, Feb 20 2004
G.f.: x*(2-x)/((1-x)*(1-2*x)). - Philippe Deléham, Oct 04 2011
E.g.f.: (3*exp(2*x) - 2*exp(x) - 1)/2. - Stefano Spezia, Sep 14 2024
Comments