A115426
Numbers k such that the concatenation of k with k+2 gives a square.
Original entry on oeis.org
7874, 8119, 69476962, 98010199, 108746354942, 449212110367, 544978035127, 870501316279, 998001001999, 1428394731903223, 1499870932756487, 1806498025502498, 1830668275445687, 1911470478658759, 2255786189655202
Offset: 1
8119//8121 = 9011^2, where // denotes concatenation.
98010199//98010200 = 99000100 * 99000102.
98010199//98010197 = 99000099 * 99000103.
Cf.
A030465,
A102567,
A115427,
A115428,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115437.
-
from itertools import count, islice
from sympy import sqrt_mod
def A115426_gen(): # generator of terms
for j in count(0):
b = 10**j
a = b*10+1
for k in sorted(sqrt_mod(2,a,all_roots=True)):
if a*(b-2) <= k**2-2 < a*(a-3):
yield (k**2-2)//a
A115426_list = list(islice(A115426_gen(),40)) # Chai Wah Wu, Feb 20 2024
A115429
Numbers k such that the concatenation of k with k+8 gives a square.
Original entry on oeis.org
6001, 6433, 11085116, 44496481, 96040393, 115916930617, 227007035017, 274101929528, 434985419768, 749978863753, 996004003993, 1365379857457948, 1410590590957816, 1762388551055953, 2307340946901148, 2700383162251217
Offset: 1
6001//6009 = 7747^2, where // denotes concatenation.
96040393//96040400 = 98000200 * 98000202.
96040393//96040397 = 98000199 * 98000203.
96040393//96040392 = 98000198 * 98000204.
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115440.
A030467
Numbers k such that k^2 is a concatenation of two successive numbers.
Original entry on oeis.org
428, 573, 727, 846, 7810, 36365, 63636, 326734, 673267, 4545454, 5454547, 47058823, 52941178, 331983807, 332667334, 384615386, 422892898, 475524477, 524475524, 577107103, 615384615, 667332667, 668016194, 719964246, 758241758, 804511280, 810873337, 857142859
Offset: 1
428^2 = 183184, the concatenation of 183 and 184.
-
t={}; Do[If[EvenQ[y=Length[x=IntegerDigits[n^2]]] && Differences[FromDigits/@Partition[x,y/2]]=={1},AppendTo[t,n]],{n, 5.5*10^6}]; t (* Jayanta Basu, May 25 2013 *)
Sqrt[#]&/@(Select[FromDigits[Flatten[IntegerDigits/@#]]&/@ (Partition[ Range[735*10^6],2,1]),IntegerQ[Sqrt[#]]&]) (* The program takes a long time to run. *) (* Harvey P. Dale, Oct 10 2017 *)
-
for(n=1, 10^9, t=eval(concat(Str(n),Str(n+1))); if(issquare(t,&s), print1(s,", "))); /* Antonio Roldán and Joerg Arndt, Dec 31 2012 */
A054214
Numbers n such that n concatenated with n-1 is a square.
Original entry on oeis.org
82, 8242, 9802, 538277, 998002, 77837026, 99980002, 7922547265, 8643251345, 9223797610, 9999800002, 106710893290, 453378226757, 491023832065, 945958034530, 999998000002, 11916002265170, 15790977390245, 24917378001937, 25082758752026, 36315251812570
Offset: 1
E.g. '8242' + '8242-1' gives 82428241 which is 9079^2.
- Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.
A115431
Numbers k such that the concatenation of k with k-2 gives a square.
Original entry on oeis.org
6, 5346, 8083, 10578, 45531, 58626, 2392902, 2609443, 7272838, 51248898, 98009803, 159728062051, 360408196038, 523637103531, 770378933826, 998000998003, 1214959556998, 1434212848998, 3860012299771, 4243705560771
Offset: 1
8083_8081 = 8991^2.
98009803_98009800 = 98999900 * 98999902, where _ denotes
concatenation
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115432,
A115433,
A115434,
A115435,
A115436,
A115442.
-
f:= proc(n) local S;
S:= map(t -> rhs(op(t))^2 mod 10^n+2, [msolve(x^2+2,10^n+1)]);
op(sort(select(t -> t-2 >= 10^(n-1) and t-2 < 10^n and issqr(t-2 + t*10^n), S)))
end proc:
seq(f(n),n=1..20); # Robert Israel, Feb 20 2019
A115428
Numbers k such that the concatenation of k with k+5 gives a square.
Original entry on oeis.org
1, 4, 20, 31, 14564, 38239, 69919, 120395, 426436, 902596, 7478020, 9090220, 6671332084, 8114264059, 8482227259, 9900250996, 2244338786836, 2490577152964, 2509440638591, 2769448208395, 7012067592220
Offset: 1
Cf.
A030465,
A102567,
A115426,
A115437,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115439.
A115430
Numbers k such that the concatenation of k with k+9 gives a square.
Original entry on oeis.org
216, 287, 515, 675, 1175, 4320, 82640, 960795, 1322312, 4049591, 16955015, 34602080, 171010235, 181964891, 183673467, 187160072, 321920055, 326530616, 328818032, 343942560, 470954312, 526023432, 528925616, 534830855
Offset: 1
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115431,
A115432,
A115433,
A115434,
A115435,
A115436,
A115441.
A115432
Numbers k such that the concatenation of k with k-4 gives a square.
Original entry on oeis.org
65, 6653, 9605, 218413, 283720, 996005, 58446925, 99960005, 6086712229, 7385370133, 8478948853, 9999600005, 120178240093, 161171620229, 358247912200, 426843573160, 893417179213, 999996000005, 23376713203604
Offset: 1
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115431,
A115433,
A115434,
A115435,
A115436,
A115443.
-
f:= proc(d) uses NumberTheory; local m,r;
m:= 10^d + 1;
if QuadraticResidue(-4,m) = -1 then return NULL fi;
r:= ModularSquareRoot(-4, m);
op(sort(select(t -> t >= 10^(d-1)+4 and t < 10^d+4, map(t -> ((r*t mod m)^2+4)/m, convert(RootsOfUnity(2,m),list)))))
end proc:
map(f, [$1..20]); # Robert Israel, Sep 12 2023
A115435
Numbers k such that the concatenation of k with k-8 gives a square.
Original entry on oeis.org
2137, 2892, 6369, 12217, 21964, 28233, 42312, 4978977, 9571608, 18642249, 32288908, 96039609, 200037461217, 305526508312, 570666416233, 638912248204, 996003996009, 1846991026584, 3251664327537, 4859838227992
Offset: 1
18642249_18642241 = 43176671^2.
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115431,
A115432,
A115433,
A115434,
A115436,
A115446.
A115433
Numbers k such that the concatenation of k with k-5 gives a square.
Original entry on oeis.org
21, 30, 902406, 959721, 6040059046, 6242406405, 9842410005, 9900249006, 15033519988494, 17250863148969, 22499666270469, 27632040031654, 34182546327286, 37487353123861, 52213551379230, 74230108225630
Offset: 1
902406_902401 = 949951^2.
Cf.
A030465,
A102567,
A115426,
A115437,
A115428,
A115429,
A115430,
A115431,
A115432,
A115434,
A115435,
A115436,
A115444.
Showing 1-10 of 19 results.
Comments