cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A173798 Partial sums of A030467.

Original entry on oeis.org

428, 1001, 1728, 2574, 10384, 46749, 110385, 437119, 1110386, 5655840, 11110387, 58169210, 111110388, 443094195, 775761529, 1160376915, 1583269813, 2058794290, 2583269814, 3160376917, 3775761532, 4443094199, 5111110393, 5831074639, 6589316397, 7393827677, 8204701014
Offset: 1

Views

Author

Jonathan Vos Post, Feb 25 2010

Keywords

Crossrefs

Cf. A030467.

Formula

a(n) = Sum_{i=1..n} A030467(i).

Extensions

a(16) ff. corrected by Georg Fischer, Aug 31 2020

A054214 Numbers n such that n concatenated with n-1 is a square.

Original entry on oeis.org

82, 8242, 9802, 538277, 998002, 77837026, 99980002, 7922547265, 8643251345, 9223797610, 9999800002, 106710893290, 453378226757, 491023832065, 945958034530, 999998000002, 11916002265170, 15790977390245, 24917378001937, 25082758752026, 36315251812570
Offset: 1

Views

Author

Patrick De Geest, Feb 15 2000

Keywords

Comments

Also, numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 2.
Also, numbers n such that n concatenated with n-5 gives the product of two numbers which differ by 4.
Every term contains an even number of digits. - Max Alekseyev, May 14 2007
If n=(10^m-1)^2+1 where m is a positive integer then n is in the sequence. Because then n has 2m digits and n concatenated with n-1 is n*10^(2m)+(n-1) = (10^(2m)-10^m+1)^2. for example, taking m=1 we get 82, the first term of the sequence. - Farideh Firoozbakht, Aug 22 2013
As pointed out by Georg Fischer, it is very plausible that all of A054214, A116123, and A116142 contain exactly the same terms. If that is indeed true, then A054214 should be edited to mention the alternative constructions, and the other two sequences declared "dead". However, this needs careful analysis to deal with the possibilities that n, n-2, and n-5 may not all have the same number of digits. - N. J. A. Sloane, Oct 30 2018. Nov 05 2018: Thanks to Giovanni Resta_ (see below), this has now been done. - N. J. A. Sloane, Nov 05 2018
From Giovanni Resta, Nov 05 2018: (Start)
For n and n-5 to have a different digit length, we must have n = 10^k+h with 0<=h<=4.
We want to prove that in this case the concatenation of n and n-5 cannot be of the form m(m+4). The numbers m(m+4) modulo 9 can only be equal to 0, 3, 5, or 6, but it is easy to see that the concatenation of 10^k+h and 10^k+h-5 can be equal to one of these values modulo 9 only if h=0.
Now, the concatenation of 10^k and 10^k-5 is equal to 3 modulo 4 for every k>1, but m(m+4) modulo 4 can only be equal to 0 or 1, so A116123 is indeed equal to this sequence.
Using an identical argument (with mods 9 and 4) we can prove that the concatenation of n and n-2, when n and n-2 have a different number of digits, cannot be equal to m(m+2) and so A116142 is equal to this sequence. (End)

Examples

			E.g. '8242' + '8242-1' gives 82428241 which is 9079^2.
		

References

  • Luca, Florian, and Pantelimon Stănică. "Perfect Squares as Concatenation of Consecutive Integers." The American Mathematical Monthly 126.8 (2019): 728-734.

Crossrefs

Extensions

More terms from Max Alekseyev, May 14 2007
a(20)-a(21) from Giovanni Resta, Nov 05 2018
Edited by N. J. A. Sloane, Nov 05 2018

A030465 Numbers k such that k concatenated with k+1 is a square.

Original entry on oeis.org

183, 328, 528, 715, 6099, 13224, 40495, 106755, 453288, 2066115, 2975208, 22145328, 28027683, 110213248, 110667555, 147928995, 178838403, 226123528, 275074575, 333052608, 378698224, 445332888, 446245635
Offset: 1

Views

Author

Keywords

Comments

Also called Sastry numbers. - Lekraj Beedassy, Jul 18 2008

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 183, p. 56, Ellipses, Paris 2008.

Crossrefs

Programs

  • Mathematica
    Select[{#,FromDigits[Join[IntegerDigits[#], IntegerDigits[1 + #]]]} & /@
      Flatten[Table[10*n + {0, 3, 4, 5, 8, 9}, {n, 10^5}]], IntegerQ[Sqrt[#[[2]]]] &] (* Hans Rudolf Widmer, Jun 30 2021 *)
  • PARI
    isok(k) = issquare(eval(concat(Str(k), Str(k+1)))); \\ Michel Marcus, Jun 30 2021

A115439 Numbers m such that the square of m is the concatenation of two numbers k and k+5.

Original entry on oeis.org

4, 7, 45, 56, 38163, 61838, 83618, 346980, 653021, 950051, 8647555, 9534265, 8167822283, 9007920992, 9209900792, 9950000501, 4737445289221, 4990568257187, 5009431742814, 5262554710780, 8373808925585, 8626931893551, 34323166122692, 34532758615690, 49625657225895, 49835249718893
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

All numbers of the form f(n)=9(n).5.0(2n).5.0(n-1).1 where n>0 are in the sequence because if k(n)=9(n).0(n).25.0(n-1).9(n).6 then f(n)^2=k(n).(k(n)+5). For example f(2)=9950000501; k(2)=9900250996 and f(2)^2=9950000501^2=9900250996.9900251001 =k(2).(k(2)+5). - Farideh Firoozbakht, Nov 26 2006
m^2 = (k)|(k+5) = (k)|(k) + 5 = (10^q + 1)*k + 5 where | denotes concatenation and q is the number of digits of k gives a nonlinear equation that can be solved using the solver below. - David A. Corneth, Jan 02 2021

Examples

			38163^2 = 14564_14569.
		

Crossrefs

Extensions

More terms from David A. Corneth, Jan 02 2021

A115446 Numbers k such that the square of k is the concatenation of two numbers m and m-8.

Original entry on oeis.org

4623, 5378, 7981, 34953, 46866, 53135, 65048, 7056187, 9783460, 43176671, 56823330, 97999801, 447255476453, 552744523548, 755424659535, 799319866014, 997999998001, 4297663349524, 5702336650477, 6971253996228, 7574200549228, 8843117894979, 3505613322543666, 3757750389995601, 3948262973033353
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			18642249_18642241 = 43176671^2.
		

Crossrefs

Extensions

More terms from David A. Corneth, Jan 02 2021

A115427 Numbers k such that k^2 is the concatenation of two numbers m and m+2.

Original entry on oeis.org

8874, 9011, 83352842, 99000101, 329767122288, 670232877713, 738226276373, 933006600341, 999000001001, 3779410975143115, 3872816717528067, 4250291784692550, 4278630943941867, 4372036686326819, 4749511753491302
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			9011^2 = 8119_8121.
		

Crossrefs

A115438 Numbers whose square is the concatenation of two numbers k and k+4.

Original entry on oeis.org

2, 310, 453, 548, 691, 856, 4382, 5619, 72730, 346533, 653468, 9090908, 94117646, 334665333, 336032387, 378253328, 390977442, 439928491, 483516486, 516483515, 560071510, 609022559, 621746673, 663967614, 665334668
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Comments

From Farideh Firoozbakht, Nov 26 2006: (Start)
1. All numbers of the form f(n)=3(n).4.6(n).5.3(n+1) are in the sequence because if k(n)=1(n).2.0(n+1).8(n).5 then f(n)^2= k(n).(k(n)+4). For example f(3)=333466653333; k(3)=111200008885 and f(3)^2=333466653333^2=k(3).(k(3)+4)=111200008885.111200008889.
2. All numbers of the form g(n)=6(n).5.3(n).4.6(n).8 are in the sequence because g(0)=548 is in the sequence(548^2=300.304) and for n>0 if h(n)=4(n).2.6(n-1).70.2(n).0 then g(n)^2=h(n).(h(n)+4). For example g(5)=666665333334666668; h(5)=444442666670222220 and g(5)^2=h(5).(h(5)+4)=444442666670222220.444442666670222224. (End)

Examples

			120085_120089 = 346533^2.
		

Crossrefs

Extensions

The initial "2" (which is admittedly somewhat dubious) added by N. J. A. Sloane, Aug 13 2008

A115440 Numbers whose square is the concatenation of two numbers k and k+8.

Original entry on oeis.org

7747, 8021, 33294318, 66705683, 98000201, 340465755425, 476452552745, 523547447256, 659534244576, 866013200681, 998000002001, 3695104677080134, 3755782995538768, 4198081170077531, 4803478892324966, 5196521107675035
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			6001_6009 = 7747^2.
		

Crossrefs

A115441 Numbers whose square is the concatenation of two numbers k and k+9.

Original entry on oeis.org

465, 536, 718, 822, 3428, 6573, 90907, 980202, 3636361, 6363640, 41176468, 58823533, 413533838, 426573430, 428571426, 432620009, 567379992, 571428575, 573426571, 586466163, 686261111, 725274729, 727272725, 731321308
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			82640_82649 = 90907^2.
		

Crossrefs

A115442 Numbers whose square is the concatenation of two numbers k and k-2.

Original entry on oeis.org

8, 7312, 8991, 32524, 67477, 76568, 4891730, 5108271, 8528094, 71588336, 98999901, 399659933007, 600340066994, 723627738227, 877712329768, 998999999001, 3485626998114, 3787100274614, 6212899725387, 6514373001887
Offset: 1

Views

Author

Giovanni Resta, Jan 24 2006

Keywords

Examples

			8083_8081 = 8991^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Table[Sqrt[k*10^IntegerLength[k]+k-2],{k,4,86*10^5}],IntegerQ] (* The program generates the first 9 terms of the sequence. *) (* Harvey P. Dale, Nov 02 2024 *)
Showing 1-10 of 22 results. Next