cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A030513 Numbers with 4 divisors.

Original entry on oeis.org

6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022

References

  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.

Crossrefs

Equals the disjoint union of A006881 and A030078.

Programs

  • Magma
    [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
    
  • Mathematica
    Select[Range[200], DivisorSigma[0,#]==4&] (* Harvey P. Dale, Apr 06 2011 *)
  • PARI
    is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A030513(n):
        def f(x): return int(n+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 16 2024

Formula

{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009

Extensions

Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010

A030637 Numbers with 19 divisors.

Original entry on oeis.org

262144, 387420489, 3814697265625, 1628413597910449, 5559917313492231481, 112455406951957393129, 14063084452067724991009, 104127350297911241532841, 3244150909895248285300369, 210457284365172120330305161, 699053619999045038539170241
Offset: 1

Views

Author

Keywords

Comments

18th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

Crossrefs

Programs

Formula

a(n)=A000040(n)^(19-1)=A000040(n)^(18). - Omar E. Pol, May 06 2008

Extensions

a(6) corrected, Mar 26 2007

A059269 Numbers m for which the number of divisors, tau(m), is divisible by 3.

Original entry on oeis.org

4, 9, 12, 18, 20, 25, 28, 32, 36, 44, 45, 49, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 96, 98, 99, 100, 108, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 160, 164, 169, 171, 172, 175, 180, 188, 196, 198, 200, 204, 207, 212, 220, 224, 225, 228
Offset: 1

Views

Author

Avi Peretz (njk(AT)netvision.net.il), Jan 24 2001

Keywords

Comments

tau(n) is divisible by 3 iff at least one prime in the prime factorization of n has exponent of the form 3*m + 2. This sequence is an extension of the sequence A038109 in which the numbers has at least one prime with exponent 2 (the case of m = 0 here ) in their prime factorization.
The union of A211337 and A211338 is the complementary sequence to this one. - Douglas Latimer, Apr 12 2012
Numbers whose cubefree part (A050985) is not squarefree (A005117). - Amiram Eldar, Mar 09 2021

Examples

			a(7) = 28 is a term because the number of divisors of 28, d(28) = 6, is divisible by 3.
		

Crossrefs

Characteristic function: A353470.

Programs

  • Maple
    with(numtheory): for n from 1 to 1000 do if tau(n) mod 3 = 0 then printf(`%d,`,n) fi: od:
  • Mathematica
    Select[Range[230], Divisible[DivisorSigma[0, #], 3] &] (* Amiram Eldar, Jul 26 2020 *)
  • PARI
    is(n)=vecmax(factor(n)[,2]%3)==2 \\ Charles R Greathouse IV, Apr 10 2012
    
  • PARI
    is(n)=numdiv(n)%3==0 \\ Charles R Greathouse IV, Sep 18 2015

Formula

Conjecture: a(n) ~ k*n where k = 1/(1 - Product(1 - (p-1)/(p^(3*i)))) = 3.743455... where p ranges over the primes and i ranges over the positive integers. - Charles R Greathouse IV, Apr 13 2012
The asymptotic density of this sequence is 1 - zeta(3)/zeta(2) = 1 - 6*zeta(3)/Pi^2 = 0.2692370305... (Sathe, 1945). Therefore, the above conjecture, a(n) ~ k*n, is true, but k = 1/(1-6*zeta(3)/Pi^2) = 3.7141993349... - Amiram Eldar, Jul 26 2020
A001248 UNION A030515 UNION A030627 UNION A030630 UNION A030633 UNION A030636 UNION ... - R. J. Mathar, May 05 2023

Extensions

More terms from James Sellers, Jan 24 2001

A030638 Numbers with 20 divisors.

Original entry on oeis.org

240, 336, 432, 528, 560, 624, 648, 810, 816, 880, 912, 1040, 1104, 1134, 1232, 1360, 1392, 1456, 1488, 1520, 1536, 1776, 1782, 1840, 1904, 1968, 2000, 2064, 2106, 2128, 2256, 2288, 2320, 2480, 2544, 2560, 2576, 2754, 2832, 2835, 2928
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form p^19, p*q^9 (A179692), p*q*r^4 (A179644) or p^3*q^4 (A179666), where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

A179646 Product of the 5th power of a prime and different distinct prime of the 2nd power (p^5*q^2).

Original entry on oeis.org

288, 800, 972, 1568, 3872, 5408, 6075, 9248, 11552, 11907, 12500, 16928, 26912, 28125, 29403, 30752, 41067, 43808, 53792, 59168, 67228, 70227, 70688, 87723, 89888, 111392, 119072, 128547, 143648, 151263, 153125, 161312, 170528, 199712
Offset: 1

Views

Author

Keywords

Comments

288=2^5*3^2, 800=2^5*5^2,..

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,5}; Select[Range[200000], f]
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,(lim\4)^(1/5),t=p^5;forprime(q=2,sqrt(lim\t),if(p==q,next);listput(v,t*q^2)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A189988(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,6)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Sum_{n>=1} 1/a(n) = P(2)*P(5) - P(7) = A085548 * A085965 - A085967 = 0.007886..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

A067004 Number of numbers <= n with same number of divisors as n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 5, 1, 6, 4, 5, 1, 7, 2, 8, 3, 6, 7, 9, 1, 3, 8, 9, 4, 10, 2, 11, 5, 10, 11, 12, 1, 12, 13, 14, 3, 13, 4, 14, 6, 7, 15, 15, 1, 4, 8, 16, 9, 16, 5, 17, 6, 18, 19, 17, 1, 18, 20, 10, 1, 21, 7, 19, 11, 22, 8, 20, 2, 21, 23, 12, 13, 24, 9, 22, 2, 2, 25, 23, 3, 26, 27
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2001

Keywords

Examples

			a(10)=3 since 6,8,10 each have four divisors. a(11)=5 since 2,3,5,7,11 each have two divisors.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    R:= Vector(N):
    for n from 1 to N do
      v:= numtheory:-tau(n);
      R[v]:= R[v]+1;
      A[n]:= R[v];
    od:
    seq(A[n],n=1..N); # Robert Israel, May 04 2015
  • Mathematica
    b[_] = 0;
    a[n_] := a[n] = With[{t = DivisorSigma[0, n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
  • PARI
    a(n)=my(d=numdiv(n)); sum(k=1,n,numdiv(k)==d) \\ Charles R Greathouse IV, Sep 02 2015

Formula

Ordinal transform of A000005. - Franklin T. Adams-Watters, Aug 28 2006
a(A000040(n)^(p-1)) = n if p is prime. - Robert Israel, May 04 2015

A166546 Natural numbers n such that d(n) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 16 2009

Keywords

Comments

Natural numbers n such that d(d(n)+1)= 2. - Giovanni Teofilatto, Oct 26 2009
The complement is the union of A001248, A030514, A030516, A030626, A030627, A030629, A030631, A030632, A030633 etc. - R. J. Mathar, Oct 26 2009

Crossrefs

Cf. A000005.
Cf. A073915. - R. J. Mathar, Oct 26 2009

Programs

  • Magma
    [n: n in [1..100] | IsPrime(NumberOfDivisors(n)+1)]; // Vincenzo Librandi, Jan 20 2019
  • Mathematica
    Select[Range@90, PrimeQ[DivisorSigma[0, #] + 1] &] (* Vincenzo Librandi, Jan 20 2019 *)
  • PARI
    isok(n) = isprime(numdiv(n)+1); \\ Michel Marcus, Jan 20 2019
    

Formula

{1} U A000040 U A030513 U A030515 U A030628 U A030630 U A030634 U A030636 U A137485 U A137491 U A137493 U ... . - R. J. Mathar, Oct 26 2009

A036457 Numbers k for which exactly 5 applications of A000005 are needed to reach 2.

Original entry on oeis.org

60, 72, 84, 90, 96, 108, 126, 132, 140, 150, 156, 160, 180, 198, 200, 204, 220, 224, 228, 234, 240, 252, 260, 276, 288, 294, 300, 306, 308, 315, 336, 340, 342, 348, 350, 352, 360, 364, 372, 380, 392, 396, 414, 416, 420, 432, 444, 450, 460, 468, 476, 480
Offset: 1

Views

Author

Keywords

Comments

Subsequences include A030630 (numbers with 12 divisors), A030636 (numbers with 18 divisors), A030638 (numbers with 20 divisors), A137491 (numbers with 28 divisors), etc. [edited by Jon E. Schoenfield, May 12 2018]

Examples

			a(13)=180; the successive iterates are 18, 6, 4, 3, and finally the 5th is 2;
a(3)=84; divisor numbers are 12, 6, 4, 3, and 2.
		

Crossrefs

Programs

  • Maple
    A036459:= proc(n) option remember;
      if n <= 2 then 0 else 1 + procname(numtheory:-tau(n)) fi
    end proc:
    select(A036459 = 5, [$1..1000]); # Robert Israel, Jan 25 2016
  • Mathematica
    Select[Range@ 480, Last@ # == 2 && #[[5]] != 2 &@ NestList[DivisorSigma[0, #] &, #, 5] &] (* Michael De Vlieger, Jan 26 2016 *)
  • PARI
    is(n)=for(i=1,4,n=numdiv(n); if(n<3, return(0))); numdiv(n)==2 \\ Charles R Greathouse IV, Sep 17 2015

Formula

d(d(d(d(d(a(n)))))) = 2 for all n.
A036459(a(n)) = 5. - Ivan Neretin, Jan 25 2016

Extensions

New name from Robert Israel, Jan 25 2016

A274360 Numbers n such that n and n+1 both have 18 divisors.

Original entry on oeis.org

6075, 23275, 25856, 26900, 33524, 45324, 46475, 61299, 61347, 77076, 82075, 93924, 96236, 107775, 111924, 117324, 118700, 133524, 137924, 155771, 209524, 210176, 219275, 229275, 230643, 234099, 257724, 258475, 272924, 275300, 278271, 312987, 325899, 332667, 348524
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A030636.

Programs

  • PARI
    is(n)=numdiv(n)==18 && numdiv(n+1)==18
    
  • PARI
    list(lim)=my(v=List()); forprime(p=2,sqrtint(lim\12), forprime(q=2,sqrtint(lim\p^2\2), if(p==q,next); my(pq2=(p*q)^2); forprime(r=2,lim\pq2, if(p==r || q==r, next); t=pq2*r; if(numdiv(t-1)==18, listput(v,t-1)); if(numdiv(t+1)==18, listput(v,t))))); Set(v)
Showing 1-9 of 9 results.