cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A204556 Left edge of the triangle A045975.

Original entry on oeis.org

1, 2, 9, 24, 45, 90, 133, 224, 297, 450, 561, 792, 949, 1274, 1485, 1920, 2193, 2754, 3097, 3800, 4221, 5082, 5589, 6624, 7225, 8450, 9153, 10584, 11397, 13050, 13981, 15872, 16929, 19074, 20265, 22680, 24013, 26714, 28197, 31200, 32841, 36162, 37969, 41624
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 18 2012

Keywords

Programs

  • Haskell
    a204556 = head . a045975_row
    
  • Magma
    [n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4: n in [1..50]]; // G. C. Greubel, Jun 15 2018
  • Mathematica
    Table[n*(2*n^2 - 3*n + (-1)^n*(n - 3) + 3)/4, {n, 1, 50}] (* G. C. Greubel, Jun 15 2018 *)
  • PARI
    Vec(x*(1+x+4*x^2+12*x^3+3*x^4+3*x^5)/((1+x)^3*(x-1)^4) + O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015
    
  • PARI
    for(n=1, 50, print1(n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4, ", ")) \\ G. C. Greubel, Jun 15 2018
    

Formula

a(n) = A045975(n,1);
a(n) = A031940(n-1) * n for n > 1;
a(n) = A204557(n) - A045895(n).
G.f.: x*(1+x+4*x^2+12*x^3+3*x^4+3*x^5) / ((1+x)^3*(x-1)^4). - R. J. Mathar, Aug 13 2012
From Colin Barker, Jan 28 2016: (Start)
a(n) = n*(2*n^2-3*n+(-1)^n*(n-3)+3)/4.
a(n) = (n^3-n^2)/2 for n even.
a(n) = (n^3-2*n^2+3*n)/2 for n odd.
(End)

A031878 Maximal number of edges in Hamiltonian path in complete graph on n nodes.

Original entry on oeis.org

0, 1, 3, 5, 10, 13, 21, 25, 36, 41, 55, 61, 78, 85, 105, 113, 136, 145, 171, 181, 210, 221, 253, 265, 300, 313, 351, 365, 406, 421, 465, 481, 528, 545, 595, 613, 666, 685, 741, 761, 820, 841, 903, 925, 990, 1013, 1081, 1105, 1176, 1201, 1275, 1301, 1378
Offset: 1

Views

Author

Keywords

Comments

Given a regular polygon with n sides, a(n) is the number of circles that have an edge of the polygon as a diameter (5 for n=4, 10 for n=5, 13 for n=6, ...). - Ahmet Arduç, Jan 28 2017
Quasipolynomial of order 2. [Charles R Greathouse IV, Dec 07 2011]

Examples

			E.g. for n=4 [1:2][2:3][3:1][1:4][4:2], so a(4) = 5.
		

Crossrefs

Cf. A031940.

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{0,1,3,5,10},60] (* Harvey P. Dale, Mar 14 2015 *)
    CoefficientList[ Series[-x (x^3 + 2x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 52}], x]  (* Robert G. Wilson v, Jul 30 2018 *)
  • PARI
    a(n)=if(n%2,n^2-n,n^2-2*n+2)/2  \\ Charles R Greathouse IV, Dec 07 2011

Formula

a(n) = C(n, 2) if n odd, a(n) = C(n, 2)-n/2+1 if n even.
G.f.: x^2*(1+2*x+x^3)/((1-x)*(1-x^2)).
a(n) = ( n*n +n -(n-1)*(n mod 2) )/2. [Frank Ellermann]

A299807 Rectangular array read by antidiagonals: T(n,k) is the number of distinct sums of k complex n-th roots of 1, n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 9, 10, 5, 1, 1, 6, 15, 16, 15, 6, 1, 1, 7, 19, 35, 25, 21, 7, 1, 1, 8, 28, 37, 70, 36, 28, 8, 1, 1, 9, 33, 84, 61, 126, 49, 36, 9, 1, 1, 10, 45, 96, 210, 91, 210, 64, 45, 10, 1, 1, 11, 51, 163, 225, 462, 127, 330, 81, 55, 11, 1, 1, 12, 66, 180, 477, 456, 924, 169, 495, 100, 66
Offset: 1

Views

Author

Max Alekseyev, Feb 24 2018

Keywords

Examples

			Array starts:
  n=1:  1,  1,  1,   1,   1,    1,    1,    1,     1,     1,     1, ...
  n=2:  1,  2,  3,   4,   5,    6,    7,    8,     9,    10,    11, ...
  n=3:  1,  3,  6,  10,  15,   21,   28,   36,    45,    55,    66, ...
  n=4:  1,  4,  9,  16,  25,   36,   49,   64,    81,   100,   121, ...
  n=5:  1,  5, 15,  35,  70,  126,  210,  330,   495,   715,  1001, ...
  n=6:  1,  6, 19,  37,  61,   91,  127,  169,   217,   271,   331, ...
  n=7:  1,  7, 28,  84, 210,  462,  924, 1716,  3003,  5005,  8008, ...
  n=8:  1,  8, 33,  96, 225,  456,  833, 1408,  2241,  3400,  4961, ...
  n=9:  1,  9, 45, 163, 477, 1197, 2674, 5454, 10341, 18469, 31383, ...
  n=10: 1, 10, 51, 180, 501, 1131, 2221, 3951,  6531, 10201, 15231, ...
  ...
		

Crossrefs

Rows: A000012 (n=1), A000027 (n=2), A000217 (n=3), A000290 (n=4), A000332 (n=5), A354343 (n=6), A000579 (n=7), A014820 (n=8).
Columns: A000012 (k=0), A000027 (k=1), A031940 (k=2).
Diagonal: A299754 (n=k).

Formula

From Chai Wah Wu, May 28 2018: (Start)
The following are all conjectures.
For m >= 0, the 2^(m+1)-th row are the figurate numbers based on the 2^m-dimensional regular convex polytope with g.f.: (1+x)^(2^m-1)/(1-x)^(2^m+1).
For p prime, the n=p row corresponds to binomial(k+p-1,p-1) for k = 0,1,2,3,..., which is the maximum possible (i.e., the number of combinations with repetitions of k choices from p categories) with g.f.: 1/(1-x)^p.
(End)

Extensions

Row 6 corrected by Max Alekseyev, Aug 14 2022
Showing 1-3 of 3 results.