cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031971 a(n) = Sum_{k=1..n} k^n.

Original entry on oeis.org

1, 5, 36, 354, 4425, 67171, 1200304, 24684612, 574304985, 14914341925, 427675990236, 13421957361110, 457593884876401, 16841089312342855, 665478473553144000, 28101527071305611528, 1262899292504270591313, 60182438244917445266889, 3031284048960901518840700
Offset: 1

Views

Author

Chris du Feu (chris(AT)beckingham0.demon.co.uk)

Keywords

Comments

From Alexander Adamchuk, Jul 21 2006: (Start)
p^(3k - 1) divides a(p^k) for prime p > 2 and k = 1, 2, 3, 4, ... or p^2 divides a(p) for prime p > 2. p^5 divides a(p^2) for prime p > 2. p^8 divides a(p^3) for prime p > 2. p^11 divides a(p^4) for prime p > 2.
p^2 divides a(2p) for prime p > 3. p^3 divides a(3p) for prime p > 2. p^2 divides a(4p) for prime p > 5. p^3 divides a(5p) for prime p > 3. p^2 divides a(6p) for prime p > 7.
p divides a(2p - 1) for all prime p. p^3 divides a(2p^2 - 1) for all prime p. p^5 divides a(2p^3 - 1) for all prime p.
p divides a((p - 1)/2) for p = 5, 13, 17, 29, 37, 41, 53, 61, ... = A002144 Pythagorean primes: primes of form 4n + 1.
(End)
If p prime then a(p-1) == -1 (mod p) [see De Koninck & Mercier reference]. Example: for p = 7, a(6) = 67171 = 7 * 9596 - 1. - Bernard Schott, Mar 06 2020

References

  • J.-M. De Koninck et A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 327 pp. 48-200, Ellipses, Paris (2004).
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 21.

Crossrefs

A diagonal of array A103438.
For a(n) mod n see A182398.

Programs

Formula

a(n) is asymptotic to (e/(e - 1))*n^n. - Benoit Cloitre, Dec 17 2003
a(n) = zeta(-n) - zeta(-n, n + 1), where zeta(s) is the Riemann zeta function and zeta(s, a) is the Hurwitz zeta function, a generalization of the Riemann zeta function. - Alexander Adamchuk, Jul 21 2006
a(n) == 1 (mod n) <==> n is in A014117 = 1, 2, 6, 42, 1806 (see the link "On the congruence ..."). - Jonathan Sondow, Oct 18 2013
a(A054377(n)) = A233045(n). - Jonathan Sondow, Dec 11 2013
a(n) = n! * [x^n] exp(x)*(exp(n*x) - 1)/(exp(x) - 1). - Ilya Gutkovskiy, Apr 07 2018
a(n) ~ ((e*n+1)/((e-1)*(n+1))) * n^n. - N. J. A. Sloane, Oct 13 2018, based on email from Claude F. Leibovici who claims this is slightly better than Cloitre's version when n is small.